
PC-Based Automation of a Multi-Mode
Control for an Irrigation System

Azzouz Benzekri
University of Boumerdes, Algeria

Faculty of Engineering
Dept of Electrical Engineering
azizbenzekri2001 @yahoo.com

Kamal Meghriche
University of Versailles S-Q, France

Versailles Lab of Sys Engineering, LISV
Mechatronic & Integrated Sys, MIS

meghrich@lisv. uvsqfr

Larbi Refoufi
University of Boumerdes, Algeria

Faculty of Engineering
Dept of Electrical Engineering

L refoufi @yahoo. com

Abstract--This paper describes the design and
implementation of a low-cost multi-mode control for an
irrigation system built around a personal computer (PC). The
system uses in-situ soil water potential measurements, the
weather condition parameters and the set points data
provided by the user to decide when and how much water to
apply to the irrigated field.

The soil moisture content and the climatic parameters are
monitored by a microprocessor-based data acquisition and
distribution controller system under the supervision of the
host computer.

A bi-directional serial link allows the host computer to
receive, store and display in real-time the overall irrigation
system status on the PC's screen. Also, the PC has the
capability to transmit data to the controller and instruct it to
operate in one of the three possible modes.

The firmware code written in assembly language and
stored in an EEPROM along with a Delphi-based friendly
graphical user interface was developed to manage irrigation
and other related practices such as fertigation.

Full circuit and program codes were implemented to
verify system operation.

Keywords-- Multi-mode control, PC-based, data
acquisition, irrigation, soil moisture, serial communication.

I. INTRODUCTION

The primary source of water in agricultural production
in most parts of the world is rainfall. The three main factors
that characterize rainfall are: amount, frequency and
intensity, the values of which vary spatially and temporally.
When the weather does not provide enough rainfall to feed
agricultural needs, farmers should supplement water
available through rainfall by some type of irrigation to
manage the soil moisture and nutrient concentration to
create the optimum-growing environment.

With limited availability of freshwater and increasing
costs of energy and manpower, irrigation, which can
contribute substantially to crop production should be
planned and managed in such a way that no drop will be
wasted.

Due to complexities in the precise knowledge of the
rainfall's main characteristics, the irrigation scheduling
cannot be planned neither on the minimum values of the
average precipitation during the growing season nor on the
maximum. The former may lead to an over-irrigation
causing crop diseases and waste of water, fertilizer, and
energy. Also, and besides running off and evaporating, the

excess water will percolate deep to soil layers below
the root zone with all nitrates and other pesticides it
contains polluting the ground water. The latter on the
other hand, leads to an under-irrigation causing a
highly reduction in both crops quantity and quality.
Therefore, deciding when to turn on the irrigation
system and how much water to apply is a complex
decision-making process.

The solution is the automation of the irrigation
water management process based on sound scientific
scheduling practices.

Actually, automated irrigations have been around
since the mid of the 20th century. The early controllers
were basically simple timers and switches used to turn
on the irrigation system for a predetermined period of
time regardless of the weather conditions or the soil
moisture content. Since that time, there was a
continuous improvement of automated systems in all
directions.

Most surface irrigations were converted to
pressurized irrigations, while the early mechanical
automation devices were continuously replaced by
modern electronic controllers. In the last two decades,
with the proliferation of powerful and low cost
microprocessors and the impressive growth of PCs
performances, mechanized irrigation harnessed the
power of computerized controllers to improve water
use [1]. This increase in the sophistication of
automation rationalized the utilization of inputs,
increased production, reduced losses and manpower
yielding in an increase of the farmer's net income.

This paper presents the design and implementation
of an automated PC-based multi-mode control for an
irrigation system. The block diagram in Fig. 1 depicts
the hardware organization for the implemented control
system. The system consists of a PC (host computer)
running Windows which uses Delphi-based software
program to access and supervise the embedded
microprocessor-based data acquisition system via the
serial port.

The following elements are used in our irrigation
control system. An in-situ controller built around the
Z80 microprocessor with tranducing circuits and A/D
converter, digital input/output (1/0) interfacing and a
bi-directional serial communication with the host
computer.

1-4244-0840-7/07/$20.00 ©2007 IEEE. 310

Fig. 1. Optimal irrigation control system block diagram.

The remainder of this paper is organized as follows. In
section 2, we present a brief description of irrigation water
management and the design approach. Section 3 discuses
the development of the data acquisition system. Section 4
presents the flowcharts summarizing both the firmware and
the software application programs of the system. The paper
terminates with a conclusion which discusses several
possible directions for continual research into the
development of automated irrigation systems.

II. IRRIGATION WATER MANAGEMENT

Increasing energy costs and decreasing water supplies
point out the need for better water management. Irrigation
water management involves more than just turning on the
irrigation system because it has not rained for a few days.
Irrigation management is a complex decision-making
process to determine when and how much water to apply to
a growing crop to meet specific management objectives
[2]. An optimum irrigation management needs rational and
scientific methods particularly in regions where irrigation
supplements rainfall and/or snowmelt. The irrigation
management strategies should be designed to minimize
water losses from evaporation, deep percolation and runoff.
Also, an efficient irrigation management should not allow
spraying during warm windy weathers. Blowing winds
reduce irrigation effectiveness because they increase
evaporation and affect the distribution patterns.

The runoff losses can be minimized or completely
eliminated by applying water at a rate lees than or equal to
the soil intake rate. The evaporation losses can be
minimized when irrigation is conducted properly.
Interrupting or delaying irrigation on hot windy days
should be a common practice. It reduces significantly water
losses due to evaporation and prevents low-uniformity of

water application.
It is known that it takes some time for water to

infiltrate through the soil; hence using a simple on-off
controller would result in a waste of water past the
root zone. By the time the water reaches the root zone,
the system is triggered to stop irrigation, but the soil
above the root zone being saturated; water will
continue to flow below the root zone. One possible
way to minimize deep percolation losses is the use of
an anticipatory approach. This technique requires at
least two soil moisture probes to properly monitor and
control the water flow front, Fig. 2. One "deep" start
probe is installed in the center of the root bowl of the
plant and is set to the desired moisture level to
indicate when irrigation should start. A second, stop
probe installed below the surface anticipates the water
movement by cutting off the irrigation as soon as it
detects the advancing front flow. As soon as the upper
layer is wetted to saturation, by gravity water begins
to percolate to the root zone [3].

III. HARDWARE SYSTEM DESIGN

The core of the in-situ irrigation system controller
is a Zilog's Z80 microprocessor. This 8-bit processor,
running at a speed of 3 MHz provides a more than
adequate processing power for this application [4]. A
standard commercial PC could have been used,
however, the inconvenience of having a PC in-situ
with the necessary power supply can be considered
excessive.

This embedded microprocessor-based data
acquisition and distribution system is placed close to
the point of measurements and actuators to minimize
sensitivity to noise and transmission lines.
Continuously, the system electrical variables
(temperature, moisture ...) provided by various
sensors are collected. These analog quantities are
converted into numerical data by the analog-to-digital
converter. The acquired data are then stored and
displayed on the user interface. Furthermore, the
controller performs some user defined functions (such
as receiving data and commands from the supervisor
host computer), performs some data processing to
determine the irrigation time using an anticipatory
approach, outputs commands to drive appropriate
actuators, and handles the transmission of data and

Fig. 2. Automatic moisture control using two
probes: start and stop.

311

Fig. 3. The overall interactive irrigation system view.

irrigation system' s status to the host computer for storage
and display of the overall system on the PC's screen. Fig. 3
illustrates the overall interactive irrigation system view
window at run time.

A. Development of the Data Acquisition Unit.

The data acquisition unit is built around the low-cost
National Semiconductor 8-bit ADC0808. The device has 8
multiplexed analog channels out of which any one can be
selected at one time [6]. When driven by a clock of 640
kHz, the ADC0808 performs a conversion rate per channel
in 100 ps, a time conversion suitable for this application
[5]. Fig. 4 depicts the schematic diagram of the data
acquisition hardware circuit.

The ADC is interfaced with the microprocessor via a
programmable peripheral interface, the Intel 8255A PPI.
The 8255A PPI has three 8-bit ports. The input lines on the
left which include the 8-bit data lines (DO-D7), two address
lines (AO-A1), read/write (RD'/WR'), and reset (RESET)
come directly from the microprocessor. The device is
selected when the chip select (CS) input is asserted. This
pin is driven by one of the outputs of the 74LS 138 decoder.
The controller uses the two least significant address bits AO

and Al to access the internal data and control
registers.

The analog-to-digital converter needs a clock to
run. This signal is derived from the system's main
clock. A binary counter, the 7493 is used to divide the
main clock to suite the frequency required by the
ADC0808. The address latch enable (ALE) and
START inputs are connected together to
simultaneously latch in the selected channel and start a
conversion. The end of a conversion is signaled by the
EOC signal. This output signal drives an edge-
triggered D flip-flop, which in turn interrupts the
microprocessor. After which, the microprocessor
asserts the RD' signal for a read operation, before
selecting the next input channel and starting the
conversion.

B. The PC- embedded System Serial Interface Link.

It is the embedded system responsibility for
sending the data and irrigation system status to the PC.
Also, it receives set points data and commands to
manage the irrigation system in either mode control
through a serial digital communication full duplex
RS232 standard interface. The unit is built around the
Intel 8251 Universal Asynchronous Receiver
Transmitter (UART), Fig. 5.

On one side, the UART is connected to the
system's data bus and the synchronizing signals and
on the other side, it is connected to the signal level
translator, the MAX232, which in turn is connected
to a DB9 connector [6].

To ensure synchronism between the host
computer and the embedded system, the transmit and
receive clock inputs are driven by the clock
generated by a baud rate , the CD4040. the flip flop
is used to divide the 3 MHz main frequency of the
system to suite the UART clock frequency which
should not exceed 1.6 MHz.

Fig. 4. The schematic layout of the data acquisition unit built around the 0808 ADC

312

F

Fig. 5. The digital serial 1/0 communication interface with the PC's serial Port.

IV. DEVELOPMENT OF SOFTWARE/FIRMWARE

The system consists of a PC running Windows, which
uses a Delphi based software program to interact with the
embedded microprocessor-based system via the serial port.
Taking into account all possible customer needs, the system
is designed to operate in three independent modes: manual,
semi-automatic or timer, and automatic. We developed a
fully dedicated firmware / software program to acquire
process, control and display the overall data and status of
the automated irrigation system.

The general philosophy of the software system design
was based on the following premises.

i- A friendly user interface
ii- Both software and firmware be based on a

modular design basis.

A. The Firmware Program.

The firmware or (hard-coded program) stored in the
EEPROM manages the embedded microprocessor-based
system. It was written in assembly language, and then
converted to machine language before being downloaded
into an EEPROM for stand alone operation.

The program begins by initializing the hardware and
establishing the link with the host computer in order to
receive the set points data and control mode command. The
flowchart of Fig. 6 summarizes the firmware program of
the embedded system.

When the system is instructed to operate in the
automatic mode, the data collection subroutine enables the
system to acquire the data from the weather sensors and soil
moisture probes. It selects the channel, starts the
conversion, waits for the conversion to terminate, then
reads and stores the data. This operation is repeated for all
eight parameters. A processing routine reads these acquired
data and the set points sent by the host computer and
calculates if an irrigation process is to be initiated or not.

The acquired data and the irrigation system status are
transmitted to the PC for display. Figures 7 and 8 show the

window application at run time of the automatic mode
and the corresponding flowchart. The window contains
displays for showing the values and the current status
of the different actuators.

Fig. 6. The main program flowchart.

Fig. 7. The window application for automatic control mode.

313

B. Development of the Graphical User Software.

Get Actual Moisture & The fully dedicated software program was written
Weather Data in Delphi to run under Windows XP platform. It has

been written in such a way that the users get access

easily to the irrigation system data, and have the
No Yes ~~~~~~~~~ability to view in real-time the system's status. This

Raining? developed friendly-user interface contains several

Compare with ~~~~~~~~windows, such the interactive view form, Fig. 3. This

Desired Data ~~~~~~~window displays graphically on the PC' s screen a

general view of the irrigation system. The window
shows in real-time the operating status of the different

0No ~~~~~~~equipments and the actual data of different

equire ~~~~~~~~~~parameters. With a simple click of the mouse on given
equipment such as a valve or the tank will display a

Yes ~~~~~~~~~~~~~moredetailed picture.
re c ma ~~~~~~~~Themanual, semi-automatic, and automatic

Arencimtion No interactive windows are illustrated by Fig. 7, 9, and 10

Suitabl 9 No ~~~~~~respectively. The RadioButton components in the

sIrrigation ONcommand type GroupBox are used to select the mode
of irrigation. It is possible for the user to change the

Sart Irrigationmode while irrigation is on by simply enabling the
TurnIrigatin OFF corresponding RadioButton.

The software program has been developed to
Water ~~~~~~~allow the user to specify the required target such as

Management soil moisture levels, soil type, maximum wind speed
to permit an irrigation to take place. Fig. II illustrates
the set points window.

Fig. 8. The automatic mode flowchart.
I

In this manual mode, Fig. 9, the user has the freedom to F270/

activate the irrigation process irrelevant of the weather WahrCniin
conditions and moisture of the soil. This feature may be of pii 12 eiiAuoici
interest during the frost events, the irrigator can spray crops IS61l ineftintW.....
to warm up the atmosphere and thereby increasing the Ra1Fl oRanIrgto
temperature. Soil.M........... rFlo Rat

In the semi-automatic or timer mode, Fig. 10, it is the UpraeCeia

The irrigation application is conditioned however by certain FonLevl 15 Wte
climatic factors such as rainfall and wind speed. This mode ~ ~e 10Res
may be used for chemical applications. In most irrigated VIn AV

IChem"ic Tpe 1agricultures, fertilizers and pesticides are generally applied L41 F.6 -

with irrigation water. The graphical user interface allows
Clsd Closed

the user to deliver the necessary fertilizer with great
simplicity. The desired fertilizer solution is obtained by Fig. 10. The window application for semi-automatic control.
dosing the fertilizers controlled by valve-2 and the water
flow controller by another valve-i1.

2Ah/07 11 :02:215

Wind Speed 12 KmIhSemi utomatic Temp~~~~~rixgoeratur bitue MaxLeVe100

Witer Rpeerd Sto P a Mto ON 0 in See
WeliLe el 7~~MxL

Chemical Solar Radiations Cancel~~~~~~~~~~~~~~MilLVe
Chemi alipe - Max Radiations 100~~...............

Level 2.05 mR Z R-Z __Closed Closed EmergenTcynPL-

Fi.....Te....do..appicaton.fr.maual.ontrl.moe..Fg..1..Th.winow.aplictionfor.ata.et.pints

314

Fig. 12. Fragments of the User Interface Delphi code.

Indicative fragments of the Delphi program code is
given in Fig. 12. The first fragment code initializes the bi-
directional serial communication between the PC and the
embedded microprocessor-based system, whereas the
second, illustrated by the second window controls the
fertilizers and water flow valves.

cables was felt excessive. A low-cost self-contained
embedded microprocessor-based system supervised
by a host computer was considered more attractive
and can easily be fed by a battery or a solar panel.

The PC does not directly control the devices;
instead, it manages the information flow and provides
the user via the graphical user interface a means to
remotely control the irrigation system by simple clicks
of the mouse.

The developed system can be enhanced by some

additional signal processing routines to display
historical diagrams of the different data.

VI. REFERENCES

[1] F.S. Zazueta., A. G Smajstrla and G. A Clark,
"Irrigation system controllers. IFAS Extension,
Agricultural and Biological Engineering
Department, Florida Cooperative Extension
Service, University of Florida. Gainsville, FL.
2002.

[2] Black R. D and Rogers D. H, "Soil water
measurements: an aid to irrigation water
management".
Available: http://www.oznet.ksu.edu..../L795.pdf.

[3] Ilsystems, "Real time irrigation - a key feature of
the Intelligent Irrigation System". Available:
http://www.iisystem.com.au/HTML/strategy.html.

[4] R. S Gaonkar, The Z80 microprocessor:
Architecture, Interfacing, Programming, and
Design, Prentice Hall: 2001.

[5] H. J. Jeffrey, "Build your low cost data
acquisition and display devices", Tab books,
1994.

[6] A. Benzekri and L. Refoufi, "Design and
implementation of a microprocessor-based
Interrupt-driven control for an irrigation
system", in Procedings of the Is' IEEE Inter
Conf on E-Learning in Industrial Electronics.
Hammamat, Tunisia, 2006.

V. CONCLUSION

An automated PC-based irrigation system which can be
operated in several modes has been presented in this paper.

The embedded microprocessor-based hardware with its
firmware as well as the fully dedicated Delphi based
graphical user interface were developed and successfully
tested.

The fully dedicated graphical user interface of the
system was developed with the premises to be easy to use

and consistent. It depicts in real time the status of
equipments, actuators, sensors, and controls. It was written
in Delphi, a visual programming compiler that allows the
programmer to program at a low level (assembly language).

We could have used a dedicated PC to monitor and
control the irrigation, the inconvenience however, is that,
having a PC in-situ with the necessary power supply and

315

procedure Tforml .Button2Click(Sender: Tobject);
begin
ApdComPortl.Open:= true;
ApdComPortl.Output:= char(strtoint(Edit6.Text))
Timer2.Enable := true;

end;

procedure Tform1.Timer2Timer(Sender :Tobject);
begin
ApdComPortl.Output:= char(strtoint(Edit7.Text))
Timer2.Enable := false;

end;

procedure Tforml .Button3Click(Sender: Tobject)
begin
ApdComPortl.Open:= true;
ApdComPort .Output:= char(strtoint(Edit8.Text))
Timer3.Enabled := true;

end;

procedure Tform1.Timer3Timer(Sender :Tobject);
begin

public
I Public declarations }

end;

var
Forml2: Tforml2;

implementation

uses Unitl, Unit2, Unit4, Unitl7, Unit21;
{ $R *.dfm I

procedure Tforml2.TrackBar1Change(Sender: TObject)
begin
form 1.trackbarl .position := trackbarl .position;
end;
procedure Tforml2.TrackBar2Change(Sender: TObject)
begin
forml.trackbar2.position := trackbar2.position;
end;

