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Overview

Polar Form Approach:

I Simple Illustration of the polar form representation

I Properties related to polar form approach

I Polar form principle

I Obtaining polar form

I Polar form for Bezier curve



Simple Illustration

The main idea behind polar forms is best explained by a picture.

f(0, 0, 0) = F (0) F (1) = f(1, 1, 1)

F (t) = f(t, t, t)

f(t, 1, 1)

f(t, t, 1)

f(0, 1, 1)f(0, t, 1)

f(0, t, t)

f(0, 0, 1)

f(0, 0, t)



Polar Form Approach

I In the picture, it is just a standard de Casteljau Algorithm.

I The difference is the label scheme; it is being used in the form
f (·, ·, ·) where f is the polar form of the polynomial F .

I Since F is of degree three, its polar form has three arguments.

I Polar form is symmetric, i.e. its three arguments can be
written in any order without changing the value of f .

I f is related to F by the identity F (u) = f (u, u, u). (u is our
old t, but u ∈ [r , s]).



Polar Form Approach cont.

I The incidence structure of the points and lines in previous
figure is reflected in the labels: All points whose labels share
at least two arguments lie on the same line.

I As t changing value from 0 to 1, the point is moving away
from the starting point to the other end point.

I This means the polar form is affine in each argument.

I And because we have multiple arguments in our affine form,
we shall call the affine form simply multiaffine.

I Thus the polar form f of a cubic polynomial curve F is a
symmetric triaffine map that satisfies F (u) = f (u, u, u).



How To Find a Point with Polar Form

From the previous example (given the control points f (0, 0, 0),
f (0, 0, 1), f (0, 1, 1) and f (1, 1, 1)), finding a point on the curve in
polar form representation can be described as follows:

I Interpolate linearly along the edges of the control polygon to
obtain the points f (0, 0, t), f (0, t, 1) and f (t, 1, 1).

I Then interpolate linearly between these points to obtain
f (0, t, t) and f (t, t, 1).

I Finally interpolate between these two points to obtain the
point F (t) = f (t, t, t).

I This is exactly the de Casteljau Algorithm.



Properties:

Before we generalize the polar form representation, let’s review
some properties related to the form:

Affine Combination

I Let {xi} ∈ Rd , a linear combination,
∑

aixi , ai ∈ R is affine if∑
ai = 1.

I In the case of affine form f : R→ Rd , f is affine if it
preserves affine combination, i.e. if f satisfies

f
(∑

j ajuj

)
=
∑

j aj f (uj) for all aj with
∑

aj = 1.



Affine Space

I U ⊂ Rd is an affine space if it is closed under any affine
combinations, i.e. ∀xi ∈ U, ai ∈ R and

∑
ai = 1 then∑

aixi ∈ U.

I Note that an affine space is like a linear space but it lacks a
distinguished origin.

I Choose an origin for the affine space U, then the difference
between the two points is a vector and the set of these vectors
is a vector space U∗.



Affine Space, Example

Example: Choose x1 as the origin, then a point u ∈ U can be
written as:

u =
n∑

i=1

aixi = x1 +
n∑

i=1

ai (xi − x1)

u − x1 =
n∑

i=1

ai (xi − x1)

−→u =
n∑

i=1

ai
−→x i with −→xi = xi − x1,

−→u = u − x1



Affine Frame

{xi}k1 ∈ U is an affine frame of the affine space U if:

I {xi} is affinely independent i.e. no xi can be expressed as an
affine combination of others.

I {xi} spans U, i.e. ∀x ∈ U, it can be expressed as an affine
combination of {xi}

If k is the number of elements in an affine frame then k − 1 is the
dimension of the space. An affine frame is an analog of a linear
basis with the same dimension of the vector space.



Theorem

Theorem: If we choose an element of an affine frame as origin for
the affine space, for example x1, then {−→xi = xi − x1}k2 form a basis
of the linear space U∗.

Proof: See the Lecture note in Chapter 2.



Affine Function

I Let P and O be two affine spaces. A function F : P → O is
affine if it preserves affine combinations, i.e.:

∀xi ∈ P, ∀ai ∈ R,
∑

ai = 1 then F (
∑

aixi ) =
∑

aiF (xi )

I F is affine iff when we choose the origins and bases for the
domain and codomain, each coordinate of F (x) can be written
as a polynomial of degree at most 1 in the coordinates of x .

I This is a properties that all the curve models we have seen
hold.



Multiaffine Function

I A function F : Pn → O is multiaffine if it is affine in its
arguments:

F (u1, . . . ,
∑

j

ajuij , . . . , un) =
∑

j

ajF (u1, . . . , uij , . . . , un)

I for all aj ∈ R with
∑

j aj = 1

I F is multiaffine iff after choosing the origins and bases for P
and O, each coordinate of F (u1, . . . , un) is a polynomial of
degree at most 1 in the coordinates of {ui}.

I This is the property of polar form.



Symmetric Function

I F : Pn → O is symmetric if the value of F remains unchanged
when we make any interchange of their arguments:

F (π(u1, . . . , un)) = F (u1, . . . , un)

where π(u1, . . . , un) is any permutation of u1, . . . , un

I This is also a property of polar form.



Polar Form Principle (so-called Blossoming Principle)

We are now like to establish the Polar Form Principle (so-called
Blossoming Principle; Ramshaw 1988)

Theorem: Polynomials F : R→ Rd of degree n and symmetric
multiaffine maps f : Rn → Rd are equivalent to each other. In
particular, given a map of either type exists that satisfies the
identity F (u) = f (u, . . . , u). In this situation f is called the
multiaffine polar form of blossom of F , while F is called the
diagonal of f . Furthermore, the q − th derivative of F is given as

F (q)(u) =
n!

(n − q)!
f (u, . . . , u, 1̂︸ ︷︷ ︸

n−q

, . . . , 1̂︸ ︷︷ ︸
q

)

where 1̂ = 1− 0 ∈ R is the standard unit vector and
f (u, . . . , u, 1̂, . . . , 1̂) is defined as above.



Polar Form Principle cont.

The theorem essentially states that each polynomial has a
unique polar form.

I This implies that polar form function is a one-to-one function.

I Without this property, polar form wouldn’t be useable.



Definition of Polar Form and Diagonal Form

I If F (u) is a polynomial of degree (at most) n, the polar form
of F (n-polar form of F ) is the unique, symmetric, n-affine
function f (u1, . . . , un) that satisfies f (u, . . . , u) = F (u).

I In this case, F is called the diagonal form of f , F (u) is called
the diagonal value of f and parameter u is called the diagonal
argument of F . Moreover, the value f (u1, . . . , un) is called the
polar value of F and each ui is a polar argument.

I Note: To prevent any confusion, we shall denote un as the list
of u, . . . , u︸ ︷︷ ︸

n

.



Methods to obtain the polar form for a polynomial

There are a number of methods to obtain the polar form for a
polynomial such as:

I using differential geometry

I using the elementary symmetric functions

I using probability theory

I using the Taylor series of an auxiliary function

I using integration by parts.

We will discuss some of these methods.



Elementary Symmetric Functions

I The elementary symmetric function and probability theory
methods replace t i by σi ,n(t1, . . . , tn).

I σi ,n(t1, . . . , tn) denotes the average value of all products
consisting of i elements of t1, . . . , tn.

I For example, the polar form of degree 3 (3− polarform) of the
polynomial F (t) = t3 + 3t2 + 5t + 1 can be obtained by
replacing

t3 by σ3,3(t1, t2, t3) = t1t2t3

t2 by σ2,3(t1, t2, t3) = (t1t2 + t1t3 + t2t3)/3

t by σ1,3(t1, t2, t3) = (t1 + t2 + t3)/3

This gives

f (t1, t2, t3) = t1t2t3 + (t1t2 + t1t3 + t2t3) +
5

3
(t1 + t2 + t3) + 1



Taylor Series

I A curve F (t) can be written as a Taylor series associate with
τ as

F (t) =
∞∑
i=0

F (i)(τ)(t − τ)i

i !

I If F (t) is of degree n then we have

F (t) =
n∑

i=0

F (i)(τ)(1− τ)

i !

The polar form of (1− τ)i can be represented as

i !

n!
(−D)n−i

n∏
1

(ti − τ)

where D denotes the differential in τ .



Taylor Series cont.

Φi (τ) =
n∏
1

(ti − τ)

is the auxiliary function. Therefore the polar form of F is

f (t1, . . . , tn) =
n∑

i=0

Φ(n−i)(τ)F (i)(τ)



Finding n + 1 degree polar form from n degree polar form

I The polar form of polynomial degree (n + 1) can be derived
from its polar form of the polynomial of degree n.

I This can be done by taking the average of all n + 1 polar
values f (ti1 , . . . , tin) where ti1 , . . . , tin are any combinations
consisting of n arguments from {ti}n+1

1 . That is

f (t1, . . . , tn+1) =
1

n + 1
(f (t1, . . . , tn) + f (t2, . . . , tn+1) + . . .

+f (tn+1, t1, . . . , tn−1))



Polar Form of Multi Polynomials

I The polar form of
∑

Fi is the sum of their polar forms at
largest degree. It can also be obtained by symmetrizing the
sum of their polar forms.

I The polar form of F times G can be obtained by
symmetrizing the product of their polar forms with distinct
arguments, i.e. renaming all arguments of g distinct from f ,
making the product and then symmetrizing the result.

I The polar form of F o G can be obtained by renaming
arguments of g each time replacing arguments of f by g .



Example

Example: Given F (t) = t2 + 2t and G (t) = t3 + 1 and
f (t1, t2) = t1t2 + t1 + t2, g(t1, t2, t3) = t1t2t3 + 1.

I F + G = t3 + t2 + 2t + 1

I FG = t5 + 2t4 + t2 + 2t

I F o G = t6 + 4t3 + 3



Example cont.

I (f + g)(t1, t2, t3) = t1t2t3 + t1t2 + t1 + t2 + 1. Symmetrizing
f + g as

1

6
[(f + g)(t1, t2, t3) + (f + g)(t1, t3, t2) + (f + g)(t2, t1, t3)

+(f + g)(t2, t3, t1) + (f + g)(t3, t1, t2) + (f + g)(t3, t2, t1)]

= t1t2t3 +
1

3
(t1t2 + t1t3 + t2t3) +

2

3
(t1 + t2 + t3) + 1

I This is the polar form of F + G . We can also obtain the polar
form for F + G by increasing the degree of f as:

f ∗(t1, t2, t3) =
f (t1, t2) + f (t1, t3) + f (t2, t3)

3

=
t1t2 + t1t3 + t2t3

3
+

2

3
(t1 + t2 + t3)

I By taking the sum of f and g we obtain the same result.



Example cont.

I Renaming arguments of g distinct from f and making the
product fg

f (t1, t2)g(t3, t4, t5) = t1t2t3t4t5 + t1t3t4t5 + t2t3t4t5 + t1t2 + t1 + t2

I Symmetrizing fg we obtain:

t1t2t3t4t5 +
2

5
(t1t2t3t4 + t1t2t3t5 + t1t2t4t5 + t1t3t4t5 + t2t3t4t5)

+
1

10
(t1t2 + t1t3 + t1t4 + t1t5 + t2t3 + t2t4 + t2t5 + t3t4 + t3t5

+ t4t5) +
2

5
(t1 + t2 + t3 + t4 + t5)

I This is the polar form of FG .



Example cont.

I Substituting all arguments of f by g whose all arguments are
reparameterized (distinct from the arguments of g at the
previous times) we obtain:

f (g(t1, t2, t3), g(t4, t5, t6)) = t1t2t3t4t5t6 + t1t2t3 + t4t5t6 + 1

I Symmetrizing the right hand side of the above, we obtain:

t1t2t3t4t5t6 +
2

10
(t1t2t3 + t1t2t4 + . . .+ t4t5t6) + 1

I This is the polar form of F o G .



Polar Form for Bezier Curves

Theorem: The polar form of a Bezier curve of degree n can be
given by

f (t1, . . . , tn) =
n∑

i=0

(
n

i

)
σi

i ,n−i (t1, . . . , tn)

where σi
i ,n−i (t1, . . . , tn) is the mean of all the products of the form

tj1 · · · tji (1− tji+1) · · · (1− tjn).

Proof: This is not very difficult. See the lecture note for
explanation.



Polar Form for Bezier Curves, cont.

Theorem: Let {b0, . . . , bn} be the control points of a Bezier curve
defined over [0, 1]. The polar form function f of this curve satisfies
the following conditions:

f (0n−i1i ) = bi for i = 0, . . . , n

where 0n−i denotes 0, . . . , 0︸ ︷︷ ︸
n−i

and 1i denotes 1, . . . , 1︸ ︷︷ ︸
i



Polar Form for Bezier Curves, Example

Example: Consider a Bezier curve of degree 3 which has control
points b0, b1, b2 and b3. Find polar form of these control points.

Solution:

b0 = f (0310) = f (0, 0, 0)

b1 = f (0211) = f (0, 0, 1)

b2 = f (0112) = f (0, 1, 1)

b3 = f (0013) = f (1, 1, 1)

f (0, 0, 0) f (1, 1, 1)

f (0, 1, 1)f (0, 0, 1)



Recap

We have been talking about:

I Polar form approach

I Definition

I Simple illustration

I Blossom principle

I Methods to find polar form

I Polar form for Bezier curve

Next lecture, we shall revisit the relationship between curves and
talk a little bit on Rational curve.


