
Lecture 4
178 359

Simulation and Modeling

Pattarawit Polpinit

Department of Computer Engineering
Khon Kaen Uiversity



Overview

Review of Bezier curve

I Parametric equation

I the properties

I de Casteljau Algorithm

Bezier Curve Modeling (cont.)

I Derivative of Bezier curves

I Degree Elevation



Review

I Given n + 1 points b0, b1, . . . , bn we can compute the Bezier
curve of degree n by

B(t) =
n∑

i=0

biB
n
i (t)

where a coefficient Bn
i (t) is Bernstein polynomial which is

defined as

Bn
i (t) =

n!

i !(n − i)!
· t i · (1− t)n−i

and t is our control weight that is in the range [0, 1]



Review 2

I The line segment between control points
b0b1, b1b2, . . . , bn−1bn are called legs.

Bezier curve properties:

I The degree of a Bezier curve is defined by n + 1 control points
in n.

I B(t) passes through (interpolates) points b0 and bn.

I All Bernstien polynomials are nonnegative. In other words, the
coefficients of the curve are nonnegative.

I Partition of Unity. All the coefficient sum to 1. This implies
affine combination

I Convex combination. This imply that the curve will lie in the
convex hull defined by the control points. Note that not all
control points will be on the boundary of the convex hull.



Review 3

p1
p2

p0

p3



The domain is not [0, 1]

I Sometimes you are in situation that the domain is not in the
proper range [0, 1].

I So you do scaling.

I Say t ∈ [a, b] then scale t to [0, 1] by

t =
t − a

b − a



de Casteljau Algoritm: Review

b1
b1
1

b2

b1
2

b3

b2
1

b3
0

b2
0

b1
0

b0

The goal is to find a point B(t) on the curve for a given t. The
steps are as follows:

I From a given n + 1 control points b0, b1, . . . , bn, create n
points b1

0, b
1
1, . . . , b

1
n using the formula:

br
i (t) = (1− t)br−1

i (t) + tbr−1
i+1 (t)



de Casteljau Algoritm: Review 2

I repeat the process to create n − 1 points b2
0, b

2
1, . . . , b

2
n.

I Eventually there will be only one point left. This point, proved
by De Calteljau, is a point on the curve corresponding to t.

I The algorithm is recursive in nature.

I It is more numerical stable.

I The time complexity is O(n2).



Derivative of Bezier Curves

I Several times, we will want to compute tangent lines over a
point on the curve.

I Take derivative of the curve which is rather simple. Recall

B(t) =
n∑

i=0

biB
n
i (t)

where

Bn
i (t) =

n!

i !(n − i)!
· t i · (1− t)n−i

I The derivative of the Bernstien polynomial is then

d

dt
Bn

i (t) = n
(
Bn−1

i−1 (t)− Bn−1
i (t)

)
Note the derivative is sometimes denoted as (Bn

i )′(t)



Derivative of Bezier Curves 2

I Then compute the derivative the curve

d

dt
B(t) =

n−1∑
i=0

Bn−1
i (t) (n(bi+1 − bi ))

I Let p0 = n(b1 − b0), p1 = n(b2 − b1), . . .,
pn−1 = n(bn − bn−1) we reduce the above equation to

B′(t) =
n−1∑
i=0

Bn−1
i (t)pi

I This means that the derivative of a Bezier curve is also a
Bezier curve, but with lower degree n − 1 and the control
points are n(b1 − b0), . . . , n(bn − bn−1).



Hodograph

I The derivative of Bezier curves are usually referred to as
Hodograph.

I The next figure show the Bezier curve created from 7 control
points

t = 1/2



Hodograph2

t = 1/2



Bezier Curves are tangent to their first and last legs

I Recall that a line segment between control points is called leg.

I The line segments of the control point b0b1 and bn−1bn are
the tangent lines to the point b0 and bn respectively.

t = 1/2



Joining Two Bezier Curves

I Since Bezier curves have tangent lines to the first and last
legs we can simply join two curves together.

I We want to achieve C 1 continuity. (Recall C 0, C 1 and C 1

continuity)

Suppose we have two Bezier curves B(t) and C(t) where
b0, . . . , bm and p0, . . . , pn are the control points respectively. The
technique is as follows:

I We must match bm and pn. C 0-continuity

I To get a smooth transition bm−1, bm, p0 and p1 should be in
the same line.

I This will make the joining look smooth. However it doesn’t
guarantee C 1-continuity.



Joining Two Bezier Curves

I To ensure C 1-continuity, the tangent line at t = 1 of B(t) and
the tangent line at t = 0 of C(t) must be equal.

I That is

B′(t) = m(bm − bm−1) = C′(t) = n(p1 − p0)

I This means that to obtain C 1-continuity at the joining point
the ratio of the last leg of the first curve an the length of the
first leg of the second curve must be n/m.

I This in practical can be done by adjusting the control points
bm, bm−1, p1 or p0).



Two Bezier Curves Created From Derivative Bezier Curves

Let us rewrite the derivative of the Bezier curve:

B′(t) =
n−1∑
i=1

Bn−1
i (t) (n(bi+1 − bi ))

= n

[(
n−1∑
i=0

Bn
i (t)bi+1

)
−

(
n−1∑
i=0

Bn
i (t)bi

)]

I As you can see, the derivative is now in terms of linear
combination of two Bezier curves:

B′1(t) =
n−1∑
i=0

Bn
i (t)bi+1 B′2(t) =

n−1∑
i=0

Bn
i (t)bi



Higher Order Derivatives

I To compute derivative of Bezier curve of order higher than 1
is still simple. Recall

B′(t) =
n−1∑
i=1

Bn−1
i (t)pi

I Apply the derivative again yield

B′′(t) =
n−2∑
i=1

Bn−2
i (t) ((n − 1)(pi+1 − pi ))

Note that pi = n(bi+1 − bi ).



Degree Elevation

I In real world applications, two or more Bezier curves are used.

I This requires that all the curves have the same degree.

I Higher degree means more complexity, but it’s a trade off for
high flexibility.

I GOAL: increase degree of the curve without changing the
shape of the curve.

I This is called Degree Elevation.



Degree Elevation: The algorithm

I Suppose we have a Bezier curve of degree n which has control
points b0, . . . , bn. And we want to increase the degree of the
curve to degree n + 1 without changing its shape.

I The new curve will have n + 2 control points.

I b0 and bn must in those set of points.

I Task: find n more points



The algorithm (cont.)

Let us define a set of control points for the new bezier curve
p0, . . . , pn+1.

I As mentioned p0 = b0 and pn+1 = bn.
I The rest of the n control points can be computed as

pi =
i

n + 1
bi−1 +

(
1− i

n + 1

)
bi where 1 ≤ i ≤ n

p1 =
1

n + 1
b0 +

(
1− 1

n + 1

)
b1

p2 =
2

n + 1
b1 +

(
1− 2

n + 1

)
b2

...

pn =
n

n + 1
bn−1 +

(
1− n

n + 1

)
bn



Degree Elevation: Note

I Each leg from the original curve (bi−1bi ) contains exactly one
new control point (pi ).

I Similar to de Casteljau Algorithm, the new point divide the
line segment in to ratio of i

n+1 and 1− i
n+1 .

I Graphically the degree elevation illustrate a corner cutting
effect.

b0 = p0

b3 = p4

p1

b1

p2

b2

p3



Degree Elevation: Note 2

I The degree elevation can be repeated as may times as you
want.

I The higher degree the more the new control points move
toward the curve.



Degree Elevation: Note 3



Degree Elevation: Note 4


