
Lecture 3
178 359

Simulation and Modeling

Pattarawit Polpinit

Department of Computer Engineering
Khon Kaen Uiversity



Overview

Curve Modeling
I Bezier Curve

I Parametric representation
I Properties
I Matrix representation

I de Calteljau Algorithm
I The algorithm
I Its complexity

I Related Derivative of the Curve



Bezier Curve: History

I Bezier curves were widely publicized by the french engineer
Pierre Bezier, who used them to design automobile bodies.

I However, the curves were first invented by Paul de Casteljau
in 1959.

I de Casteljau’s algorithm, a numerically stable method was
used to evaluate Bezier curves.

I Bezier curves are extensively used in computer graphics and
animations.



Bezier Curve: Definition

I Given n + 1 points, p1, p2, . . . , pn in R3.

I A Bezier curve of degree n (order n + 1) defined by these
points, can be expressed as

B(t) = p0B
n
0 (t) + p1B

n
1 (t) + . . . + pnB

n
n (t)

where

Bn
i (t) =

(
n

i

)
· t i · (1− t)n−i =

n!

i !(n − i)!
· t i · (1− t)n−i

is a Bernstein polynomials and
(n

i

)
is a binomial coefficients.



Cubic Bezier Curve

p1
p2

p0

p3



Cubic Bezier Curve: Description

I Four points p0, p1, p2 and p3 are needed in the plane to
define a cubic Bezier curve.

I The curve starts at p0 going toward p1 and arrives at p3

coming from the direction of p2.

I Usually, it will not pass through p1 or p2; these points are only
there to provide directional information.

I The distance between p0 and p1 determines“how long” the
curve moves into direction p2 before turning towards p3.

p1
p2

p0

p3



Cubic Bezier Curve: The Equation

B(t) =
3∑

i=0

piB
3
i (t) = p0B

3
0 (t) + p1B

3
1 (t) + p2B

3
2 (t) + p3B

3
3 (t)

where

B3
0 (t) =

(
3

0

)
· t0 · (1− t)3−0 = (1− t)3 ≥ 0

B3
1 (t) =

(
3

1

)
· t1 · (1− t)3−1 = 3t(1− t)2 ≥ 0

B3
2 (t) =

(
3

2

)
· t2 · (1− t)3−2 = 3t2(1− t) ≥ 0

B3
3 (t) =

(
3

3

)
· t3 · (1− t)3−3 = t3 ≥ 0



Convex Combination

Cubic Bezier Curve is a convex combination.

Proof: The curve is a convex combination iff it is a linear
combination, affine combination and all coefficients are
nonnegative.

I It is obvious that B(t) is a linear combination.

I Affine combination:

3∑
i=0

B3
i (t)

= (1− t)3 + 3t(1− t)2 + 3t2(1− t) + t3

= (1− 3t + 3t2 − t3) + (3t − 6t + 3t2) + (3t2 − 3t3) + t3

= 1

I B3
i (t) ≥ 0 for i = {0, 1, 2, 3} as shown previously.



Matrix Representation

B(t) = G ·M · T

B(t) =
(
−t3 + 3t2 − 3t + 1

)
· p0 +

(
3t3 − 6t2 + 3t

)
· p1

+
(
−3t3 + 3t2

)
· p2 +

(
t3
)
· p3

where
G = [ p0 p1 p2 p3 ]

M =


−1 3 −3 1

3 −6 3 0
−3 3 0 0

1 0 0 0



T =


t3

t2

t
1





Properties of Bezier Curve

1. The Bezier curve passes through (interpolates) two endpoints.

B(0) = p0 and B(1) = pn

p1
p2

p0

p3



Properties of Bezier Curve (2)

2. Affince combinations

n∑
i=0

Bn
i (t) = 1,∀t ∈ [0, 1]



Properties of Bezier Curve (3)

3. Convex combinations: the Bezier curve lies inside the convex
hull of the control net.

p1
p2

p0

p3



de Casteljau Algorithm

I named after Paul de Casteljau.

I A recursive method used to evaluate Bernstien polynomial of
Bezier curves.

I Sometimes used to split a single Beizer curve into two.

I Slower than most direct approach, but numerically more
stable.

So why de Casteljau Algorithm?

I Objective is to find a point on a Bezier curve.

I We can obviously plug in t then compute every Bernstien
polynomials; their products and their corresponding control
points.

I This work OK, but not numerically stable, namely could
introduce numerically error.



de Casteljau Algorithm (2)

Recall that the Bezier curve is

B(t) =
n∑

i=0

Bn
i (t) · bi

Note: hereafter we shall denote a point with bi .

We can calculate the points on the curve corresponding to t by

b0
i (t) = bi

br
i (t) = (1− t) · br−1

i (t) + t · br−1
i+1 (t)

where r = 1, . . . , n and i = 0, . . . , n − r .



Fundamental Concept

I The concept is, given t, we want to find a point C such that
it divide a line segment AB into AC and CB with a ratio of t
and 1− t.

CA B

I C can be found by (1− t)A + t · B
I Hence, to find a point of degree n at t, we divide a line

segment of a line segment constructed from points of degree
n − 1 at t.



de Casteljau Algorithm: Example

Example: Find a point on a Bezier curve where t = 1/4.

b1
b1
1

b2

b1
2

b3

b2
1

b3
0

b2
0

b1
0

b0

Graphically representing a cubic Bezier curve (degree 3) and the
calculated point where t = 1/4.



de Casteljau Algorithm: Example

Example: Calculate a point on the cubic Bezier curve when
t = 1/2 using de Casteljau algorithm

Answer: A point on the curve when t = 1/2 is b3
0(1/2).

Graphically, that is



de Casteljau Algorithm: Example (cont.)

Answer: Expression can be computed by,



Complexity of de Casteljau Algorithm

Using de Casteljau algorithm

b0
i (t) = bi

br
i (t) = (1− t) · br−1

i + t · br−1
i+1 (t)

where r = 1, . . . , n and i = 0, . . . , n − r .

I There are 1 addition (1A) and 2 multiplications (2M) in each
recursion.

I Thus, the complexity can be calculated by

n∑
r=1

n+r∑
i=0

(A + 2M)



Complexity (2)

n∑
r=1

n−r∑
i=0

(A + 2M) =
n∑

r=1

(n − r + 1)(A + 2M)

=
n∑

r=1

(n − r + 1)(A) +
n∑

r=1

(n − r + 1)(2M)

=

[
n∑

r=1

(n + 1)A−
n∑

r=1

rA

]

+

[
n∑

r=1

(n + 1)2M −
n∑

r=1

(r)2M

]

=

[
n(n + 1)A− n(n + 1)

2
A

]
+ [2n(n + 1)M − n(n + 1)M]



Complexity (3)

n∑
r=1

n−r∑
i=0

(A + 2M) =
n∑

r=1

(n − r + 1)(A + 2M)

=
...

=

[
n(n + 1)A− n(n + 1)

2
A

]
+ [2n(n + 1)M − n(n + 1)M]

=
n(n + 1)

2
A + n(n + 1)M

I de Casteljau algorithm requires n(n + 1)/2 additions and
n(n + 1) multiplications.

I The time complexity is O(n2).


