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Abstract. XML indices are essential for efficiently processing XML queries
which typically have predicates on both structures and values. Since the num-
ber of all possible structural and value indices is large even for a small XML
document with a simple structure, XML DBMSs must carefully choose which
indices to build. In this paper, we propose a tool, called XIST, that can be used
by an XML DBMS as an index selection tool.
XIST exploits XML structural information, data statistics, and query workload
to select the most beneficial indices. XIST employs a technique that organizes
paths that are evaluated to the same result into equivalence classes and uses this
concept to reduce the number of paths considered as candidates for indexing.
XIST selects a set of candidate paths and evaluates the benefit of an index on
each candidate path on the basis of performance gains for non-update queries
and penalty for update queries. XIST also recognizes that an index on a path can
influence the benefit of an index on another path and accounts for such index
interactions. We present an experimental evaluation of XIST and current XML
index selection techniques, and show that the indices selected by XIST result in
greater overall improvements in query response times and often require less disk
space.

1 Introduction
An XML document is usually modeled as a directed graph in which each edge rep-
resents a parent-child relationship and each node corresponds to an element or an at-
tribute. XML processing often involves navigating this graph hierarchy using regular
path expressions and selecting those nodes that satisfy certain conditions. A naive ex-
haustive traversal of the entire XML data to evaluate path expressions is expensive,
particularly in large documents. Structural join algorithms [1, 7, 29] can improve the
evaluation of path expressions, but as in the relational world, join evaluation consumes
a large portion of the query evaluation time. Indices on XML data can provide a sig-
nificant performance improvement for certain path expressions and predicates since
they can directly select the nodes of interest. The choice of indices is one of the most
critical administrative decisions for any database system. Building an index can poten-
tially improve the response time of applicable queries but it degrades the performance
of updates. Furthermore, in many practical cases, the amount of storage for indices is
limited.

These considerations for building indices have been investigated extensively for re-
lational databases [3,26]. However, index selection for XML databases is more complex



2

due to the flexibility of XML data and the complexity of its structure. The XML model
mixes structural tags and values inside data. This extends the domain of indexing to the
combination of tag names and element content values. In contrast, relational database
systems mostly consider only attribute value domains for indexing. Moreover, the nat-
ural emergence of path expression query languages, such as XPath, further suggest the
need for path indices. Path indices have been proposed in the past for object-oriented
databases and even as join indices [25] in relational databases. To the best of our knowl-
edge, the only research that deals with selecting useful path indices to optimize the over-
all query workload time was proposed by Chawathe et al. [5]. However, this work [5]
has its applicability in object-oriented databases, not in XML databases. Unlike rela-
tional and object-oriented databases, XML data does not require a schema. Even when
XML documents have schemas, the schemas can be complex. An XML schema can
specify optional, repetitive, recursive elements, and complex element hierarchies with
variable depths. Path queries need to match the schema if it exists. In addition, a path
expression can also be constrained by the content values of different elements on the
path. Hence, selecting indices to aid the evaluation of such a path expression can be
challenging.

Recently, several indexing schemes have been proposed to support complex navi-
gation and selection on XML data [8, 11, 12, 16–18, 20, 21, 23]. While these indexing
schemes address at least one XML indexing requirement, they do not fully address the
automatic index selection problem in XML databases. The focus of those papers is on
the technology of efficient indexing of XML data. In contrast, the focus of our work is
on the methods to identify an optimal set of indices assuming path, element, and value
indices. In our problem setting, the important issues include the benefit of an index on
a path for partially matching a query and the index interaction.

This paper describes XIST, a prototype XML index selection tool using an inte-
grated cost/benefit-driven approach. The cost models used in this paper are developed
for a prototype native XML DBMS that we are building. As in other native XML sys-
tems, this system stores XML data as individual nodes [6, 12, 15, 18, 29], and also uses
stack-based join algorithms [1, 2, 7] for evaluating path expressions. However, the gen-
eral framework of XIST can be adapted to systems with other cost models by modifying
the cost equations that we use in this paper to accurately model the actual algorithms
that are employed in that system.

1.1 Problem Statement

Our goal is to select a set of indices given a combination of a query workload, a schema,
and data statistics. We evaluate the usefulness or the benefit of an index by comparing
the total execution costs for all queries in the workload before and after the index is
available. We compare the benefit with the cost of updating the index and recommend
a set of indices that is the most effective given a constraint on the amount of disk space.
To choose a set of indices, we compare the relative quality of any two sets of indices.
The total cost of a set of indices for a given workload is defined as the sum of the
execution costs of all queries in the workload. We use the total cost as the quality metric.
Given a workload, a set of indices that has the least total cost is called the optimal set
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of indices. A smaller total cost for a set of indices indicates a higher quality of the set
of indices.

The goal of the index selection tool is to suggest a set of indices that is optimal or
as close to optimal as possible within a space constraint, such as a limit on the available
disk space for storing indices.

1.2 Contributions

Our work makes the following contributions:

– We propose a cost-benefit model for computing the effectiveness of a set of XML
indices. In this cost-benefit analysis, we account for the update costs for the index
and also consider the interaction effect of an index on the benefit of other indices.
By carefully reasoning about index interactions, we can eliminate redundancy com-
putations in the index selection tool.

– When the XML schema is available, XIST uses a concept of path equivalence
classes, which results in a dramatic reduction in the number of candidate indices.

– We develop a flexible tool that can recommend candidate indices even when only
some input sources are available. In particular, the availability of only either the
schema or the user workload is sufficient for the tool.

– Our experimental results indicate that XIST can produce index recommendations
that are more efficient than those suggested by current index selection techniques.
Moreover, the quality of the indices selected by XIST increases as more information
and/or more disk space is available.

The remainder of this paper is organized as follows. Section 2 presents data mod-
els, assumptions, and terminologies used in this work. In Section 3, we describe the
overview of the XIST algorithm. Sections 4, 5, and 6 describe the individual compo-
nents of XIST in detail. Experimental results are presented in Section 7, and the related
work is described in Section 8. Finally, Section 9 contains our concluding remarks and
directions for future work.

2 Background
In this section, we describe the XML data models, terminologies, and assumptions that
we use in this paper.

2.1 Models of XML Data, Schema, and Queries
We model XML data as a directed label graph GD = (VD, ED, rootD, NIDD, label,
value). Each edge in ED indicates a parent-child or node-value relationship. An el-
ement with content is given a value via the value function. Each element in VD is
labeled with its type name via the label function, and with a unique identifier via the
NIDD function. An attribute is treated like an element. Every node is reachable from
the element rootD.We encode the nodes of the XML graph using Dietz’s numbering scheme [9, 10].
Each node is labeled with a pair of numbers representing its positions on preorder and
postorder traversals. Using Dietz’s proposition, node x is an ancestor of node y if and
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only if the preorder number of node x is less than that of node y and the postorder
number of node x is greater than that of node y. This basic numbering scheme can
be extended to include an additional number that encodes the level of the node in the
XML data tree. This numbering scheme is used in our cost models when performing
the structural joins [1, 7, 29] between parents and children or between ancestors and
descendants.

Figure 1 shows a data graph for a sample bib database using the Dietz numbering
scheme. For this example, given the path query author/last, we could perform a
structural join by looking up the element indexes on author and last, and verifying
parent-child relationships using the numbering scheme. We need the additional level
information of a node to differentiate between parent-child and ancestor-descendant
relationships.

We also model an XML schema as a directed label graph GS = (VS , ES , rootS , label,
NIDS). Each edge in ES indicates a parent-child relationship. Each node in VS is la-
beled with its type name via the label function, and with a unique identifier via the
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NIDS function. When applying the NIDS function to a node x, the output is a unique
number associated with that node.

Figure 2 shows the schema of a sample bibliography database that we use as a
running example throughout this paper.

2.2 Terminologies and Assumptions
We now define terminologies for paths and path indices that are used in this paper.

A label path p (referred to as a path as well) is a sequence of labels l1/l2/.../lk
where the length of the path is k. A node path is a sequence of nodes n1/n2/.../nk

such that an edge exists between node ni and node ni+1 for 1 ≤ i ≤ k − 1. A path
l1/l2/.../lk matches a node path n1/n2/.../nk if li = label(ni) where ∀i = 1...k. A
path l1/l2/.../lk matches a node n if l1/l2/.../lk matches a node path ending in n. We
refer to node n as the ending node of path l1/l2/.../lk. We assume that the returned
result of path p is the ending node of path p. Path pd is dependent on path p if p is a
subpath of pd. For example, path l1/l2/.../lk is dependent on path l1/l2.

A path index (PI) on path p is an index that has p as a key and returns the node IDs
(NIDs) of the nodes that matched p. (As discussed in Section 2.1, an NID is simply a
triplet encoding the begin, end, and level information.) To allow using the index to eval-
uate a matching path expression in both forward and backward directions, we assume
that the path index structure stores the NIDs of the starting and ending nodes of the
paths. For example, the index on book/editor stores {[(23,44,2), (28,32,3)]} where
(23,44,2) is the NID of the starting node and (28,32,3) is the NID of the ending node.

An element index (EI) is a special type of a path index. Since an element “path”
consists of only one node, the element index stores only the NIDs of the nodes matched
by the element name.

A candidate path (CP) is a path on which XIST considers as a candidate for building
an index. The corresponding index on the candidate path is called a candidate path index
(CPI).

In our work, we consider the following types of indices as candidates: (i) structural
indices on individual elements, (ii) structural indices on simple paths as defined above,
and (iii) value indices on the content of elements and attribute values. It is possible to
extend our models to include other types of indices, such as an index on a twig query,
in the future.

Table 1 summarizes the terminology that is used in this paper; some of these terms
are described in the following section.

3 The XIST Algorithm
In making its recommendations for a set of indices, XIST is designed to work flexibly
with the availability of a schema, a workload, and data characteristics of an XML data
set.

Figure 3 shows an overview of XIST, which consists of four modules that adapt to a
given set of input configuration. The first module is the candidate path selection mod-
ule, which eliminates a large number of potentially irrelevant path indices. It uses the
following two techniques: (i) If the query workload is available, this module eliminates



6

Terms Explanation
S Set of indices
W Target workload
Ip Index on path p
EQ Equivalence Class
B(Ip), BE(Ip), BD(Ip) Benefits of Ip

FE , FD Benefit computation functions
U(Ip) Update cost of Ip

C(p, S) Cost of evaluating p using S
Table 1. Terminology

paths that are not in the query workload, and (ii) If the schema is available, the tool
identifies and prunes equivalent paths that can be evaluated using a common index.

To compute the benefits of indices on candidate paths, we use either the cost-based
benefit computation module or the heuristic-based benefit computation module, de-
pending on the availability of data statistics. When data statistics are available, the cost-
based benefit computation module is employed. When data statistics are not available,
the heuristic-based benefit computation module is operated instead.

The last module is configuration enumeration, which in each iteration chooses an
index from the candidate index set that yields the maximum benefit. The configuration
enumeration module continues selecting indices until a space constraint, such as a limit
on the available disk space, is met.

The XML path index selection problem faces at least three challenges: (i) How to
prune out paths that are likely to be unimportant? This is challenging because there may
be many distinct paths in XML data sets; (ii) How to efficiently and accurately evaluate
the benefits of path indices? This requires an accurate modeling of the costs of the
index access methods and the join processing; and (iii) How to efficiently model index
interactions and still reduce the number of the index benefit re-computations? This is
difficult because the goal is to maximize the overall benefit but do so in a reasonable
amount of time.

To address the above problems, the XIST algorithm operates in three phases. The
first phase, candidate path selection, tackles the problems of choosing candidate paths
(CPs). In the second phase, benefit computation, the benefits of the candidate paths
are evaluated using proposed cost models. If the index interaction were not taken into
account, XIST would just choose the top indices with the highest benefits. However,
since the index interaction is taken into account, in the third phase, the configuration
enumeration module chooses the index with the highest benefit in each iteration until
the index space constraint is met. In each iteration of this phase, the XIST algorithm
recomputes the benefits of only some candidate indices (instead of all candidate indices)
to optimize the index selection time.

XIST is designed to adapt to the environment that some inputs may be missing.
For instance, if the schema information is not available, XIST skips the schema based
candidate path reduction step. If the workload detail is not known, the tool generates a
normalized workload distribution using the schema, and assuming that all paths found
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in the schema are accessed with the same probability. When data statistics are not avail-
able, XIST resorts to path length-based heuristics to estimate the benefit of an index.

Figure 4 presents the overview of the XIST algorithm. In the following sections,
we describe in detail the steps shown in this figure. The first phase, the selection of
candidate paths (CPs), is presented in Section 4. Section 5 discusses the benefit com-
putations for the indices on the selected CPs (CPIs). Finally, Section 6 describes the
re-computation for the benefits of CPIs that have not been chosen (line 9).

4 Candidate Path Selection
In this section, we address the important issue of selecting candidate paths (CPs). Since
the total number of candidate paths for an XML schema instance can be very large, for
efficiency purposes, it is desirable to identify a subset of the candidate paths that can
be safely dropped from consideration without reducing the effectiveness of the index
selection tool. The candidate path selection module in XIST employs a novel technique
to achieve this goal.

Our strategy for reducing the number of CPs is to share an index among multiple
paths. Our approach for grouping similar paths involves first identifying a unique path
in an XML schema and then grouping suffix subpaths of the unique path.
Definition 41 A path pu, n1/n2/.../nk, is a unique path if there is one and only one
incoming edge to ni and there is one and only one incoming edge to node ni+1 which
must be exclusively from node ni for i = 1 to k − 1.

Since the ending nodes of pu are the same as the ending nodes of the suffix paths of
pu, the index on pu returns the same set of nodes that the suffix paths of pu will (assume
that the returned nodes of the path are only the ending nodes of the path).
Definition 42 Path p1 and path p2 are equivalent if p1 and p2 share the same suffix
subpath and either p1 is a suffix path of p2 or p2 is a suffix path of p1.
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Inputs: An index space constraint k (which can be the
available disk space [default], or the number of indices),
an XML schema, a query workload, and optional data statistics.
Requires at least the schema or the workload.
Output: A set of recommended path indices, S
XIST()
// Phase 1: Candidate Path Selection
1. use the XML schema or the query workload to

compute the target workload W .
2. choose paths and subpaths in the target workload W

to form the set of candidate paths (CPs).
// Phase 2: Benefit Computation
3. for each CP p, compute the benefit of the

corresponding CPI: Ip. The benefit is B(Ip)
// Phase 3: Configuration Enumeration
4. initialize the set of selected indices, S to IE

where IE is the set of element indices.
5. while (|S| < k)
6. select p ∈ CP and Ip 6∈ S such that B(Ip)

is the maximum.
7. CP = CP − p
8. S = S ∪ Ip

9. ∃p ∈ CP , recompute the benefits of candidate
path indices, B(Ip)

10. endwhile

Fig. 4. The XIST Algorithm
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Input: An XML schema graph, Gs

Output: Equivalence classes, EQ
FindEQs()
1. for path p that has only one incoming edge
2. insert p to EQ(p)
3. nj = the parent of the starting node of p
4. while (nj has one and only one coming edge)
5. insert nj/p to EQ(p).
6. p = nj/p
7. nj = the parent of the starting node of p
8. endwhile
9. endfor

Fig. 5. The Algorithm for Finding Equivalence Classes (EQs)

We refer to a group of equivalent paths as an Equivalence Class (EQ). As an exam-
ple of an EQ consider the schema shown in Figure 2. A sample EQ in this schema is the
set containing the following paths: bib/book/publisher, book/publisher,
and publisher. For brevity, we refer to the paths using the concatenation of the first
letter of each element on the path (for example, we refer to bib/book/publisher
as bbp). As shown in the schema graph in Figure 2, bbp is a unique path as p has only
one parent, and each of its ancestors also has only one parent. Nodes that match bbp
are the same as nodes that match the suffix paths of bbp which are bp and p.

Instead of building indices on each path in an EQ, XIST only builds an index on the
shortest path in each EQ. We choose the shortest path because the space and access time
of indices in EQs can often be reduced. This is because the shortest path can simply be
a single element. In such an index, we only need to store three integers (begin, end,
level) per index entry, whereas in indices on longer paths require storing six integers
per index entry.

Since path equivalent classes are determined based only on the XML schema, these
classes are valid for all XML documents conforming to the XML schema. The EQs
cannot be determined by using data statistics because statistics do not indicate whether
a node is contained in only one element type. Since some elements in XML data can
be optional, they may not appear in XML document instances and thus may not ap-
pear in data statistics as well. For example, from the data graph in Figure 1, first
and author/first seem to be equivalent paths since author/first seems to
be a unique path. However, from the schema graph in Figure 2, first is an optional
subelement of editor, thus there can be an edge coming to first from editor.
Therefore, author/first is actually not a unique path, and first is thus not equiv-
alent to author/first. Therefore, EQs can only be determined by using the schema.
Figure 5 presents an algorithm to find the EQs in an XML schema graph.

In the context of XML indices, the equivalence class (EQ) concept is different from
the bisimilarity [20] and k-bisimilarity [17] concepts. Unlike k-bisimilarity, an EQ is
defined by an XML schema, not by XML data. Thus, it takes less time to compute EQs
than to compute k-bisimilarity since there are usually fewer edges in an XML schema
graph than in an XML data graph. Each EQ is a set of paths that lead to the same
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Inputs: A set of existing indices S, a target workload W,
and a CPI on path p, Ip

Output: The benefit of Ip, B(Ip)
ComputeIndexBenefit()
// FE and FD are functions for benefit computation
1. BE = 0
2. for path pe ∈ EQ(p) and pe ∈W
3. Be = FE(p, pe, S)
4. BE = BE + Be

5. endfor
6. BD = 0
7. for path pd with p as a subpath and pd ∈W
8. Bd = FD(p, pd, S)
9. BD = BD + Bd

10. endfor
11. if data statistics are available
12. B(Ip) = BE + BD − U(Ip)
13. else
14. B(Ip) = BE + BD

Fig. 6. The Index Benefit Computation Algorithm for CPI Ip

destination node; hence it can be represented by the shortest path in the EQ that lead
to that node. In each EQ, the starting nodes of the shortest path are (kl-ks)-bisimilar
where kl is the length of the longest path and ks is the length of the shortest path. For
example, for EQ(p) = {bbp, bp, p}, nodes matching p are 2-bisimilar; p is the
shortest path (ks = 1), and bbp is the longest path (kl = 3).

5 Index Benefit Computation

In this section, we describe the internal benefit models used by the XIST algorithm to
compute the benefits of candidate path indices (CPIs).

The total benefit of an index Ip, B(Ip), is computed as the sum of: (i) BE , which is
the benefit of using Ip for answering queries on the equivalent paths of p (recall that all
paths in an EQ share the same path index), and (ii) BD, which is the benefit of using Ip

for answering queries on the dependent paths of p. Figure 6 presents an algorithm for
computing the total benefit of Ip, B(Ip).

Figure 6 shows the index benefit computation algorithm which invokes two func-
tions, FE and FD, to compute BE and BD, respectively. The accuracy of the com-
puted benefits depends on available information. If data statistics are available, XIST
computes the benefit by using the cost functions that incorporate the gain achieved via
using the index to answer queries and the cost paid for the index update cost, U(Ip). If
data statistics are not available, XIST uses heuristics to compute the benefit. The fol-
lowing subsections describe in detail the index benefit computation. We first discuss the
cost-based approach and then discuss the heuristic-based approach.
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5.1 Cost-based Benefit Computation
When data statistics are available, XIST can estimate the cost of evaluating paths more
accurately. The collected data statistics consist of a sequence of tuples, each represent-
ing a path expression and the cardinality of the node set that matches the path (also
called the cardinality of a path expression). XIST uses the path cardinality to predict
path evaluation costs. In reality, however, these costs depend largely on the native stor-
age implementation and the optimizer features of an XML engine. To address this issue,
we approximate the path evaluation costs via abstract cost models based on our experi-
mental native XML DBMS.

Computing Evaluation Costs We first discuss the cost estimation for retrieving el-
ements and then discuss the cost of evaluating paths with length longer than one. In
the following evaluation costs, we assume that element indices and path indices are
implemented using a hash index, and that element indices exist.

The cost of evaluating a path with the index on the path is estimated to be propor-
tional to the cardinality of the path since the path index is implemented using a hash
index and the hash index access cost is proportional to the number of items retrieved
from the hash index. Let C(p1/p2, S ∪ Ip1/p2

) be the cost of evaluating p1/p2. Then,

C(p1/p2, S ∪ Ip1/p2
) ≈ KI × (|p1/p2|) (1)

where KI is a constant and |p1/p2| is the cardinality of the nodes matched by p1/p2.
If an index on a path does not exist, XIST splits the path into two subpaths and then

recursively evaluates them. When splitting the path, XIST needs to determine the join
order of subpaths to minimize the join cost. The chosen pair has the minimal sum of
the cardinalities of subpaths. Subpaths are recursively split until they can be answered
using existing indices. After subpaths are evaluated, their results are recursively joined
to answer the entire path. Finding an optimal join order is not the focus of this paper,
but it has been recently proposed [28].

When XIST joins a path of two indexed subpaths, it uses a structural join algo-
rithm [1], which guarantees that the worst case join cost is linear in the sum of sizes of
the sorted input lists and the final result list. Let S be the set of indices which exclude
the index on p1/p2, and C(p1/p2, S) be the cost of joining between path p1 and path
p2. Then,

C(p1/p2, S) ≈ KJ × (|p1|+ |p2|+ |p1/p2|) (2)

where KJ is the constant and |pi| is the estimated cardinality of the nodes that match
pi. The estimated cardinality of the nodes that match the paths are given as an input of
the XIST tool (by the XML estimation module in the system).

Since the maintenance cost for an index can be very expensive, XIST also considers
the maintenance cost in the index benefit computation. The actual cost for updating a
path index is very much dependent on the system implementation details, and different
systems are likely to have different costs for index updates. In this paper, for simplicity,
we use an update cost model in which the update cost for a given path index is propor-
tional to the the number of entries being updated in the path index. (This cost model can
be adapted in a fairly straightforward manner if the cost needs to include a log-based
factor, which is a characteristic for tree-based indices.)
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Let U(Ip1/p2
) be the cost of updating the index on path p1/p2, then

U(Ip1/p2
) ≈ KU × (|p1/p2|) (3)

where KU is the constant and |p1/p2| is the cardinality of the nodes that match p1/p2.

Using Cost Models for Computing Benefits Now we describe how the cost models
are used to compute the total benefit of an index when data statistics are available.
The benefit function FE(p, pe, S) is the function to compute the benefit of using Ip to
completely evaluate a path in the equivalence class of p, assuming the set of indices S
exists. The benefit function FD(p, pd, S) is the function to compute the benefit of using
Ip to partially answer a dependent path of p (pd), assuming the set of indices S exists.

FE(p, pe, S) = C(pe, S)− C(p, S ∪ Ip)
FD(p, pd, S) = C(pd, S)− C(pd, S ∪ Ip)

Fig. 7. FE and FD for Ip (with Statistics)

The benefit functions FE and FD, which are shown in Figure 7, are derived from
the difference between the cost of evaluating a path before and after a candidate index
is available. In this figure, Ip represents the candidate index on path p. pe is the path
that is in the same equivalence class as p, whereas pd is a path that is not in the same
equivalence class as p, but contains p as a subpath. S is used to represent the set of
current selected indices.

5.2 Heuristic-based Benefit Computation

When data statistics are not available, XIST estimates the benefit of the index by using
the lengths of queries and the length of the candidate path (CP). The benefit of a candi-
date path index (CPI) is estimated based on: a) the number of joins required to answer
queries with and without the CPI, and b) the use of a CPI to completely or partially
evaluate a query.

In the following sections, we use the following notations: p is a CP, Ip is a CPI, pe

is an equivalent path of p (a path that Ip can completely answer), and pd is a dependent
path of p (a path that Ip can partially answer).

We first consider the benefit of Ip when it can completely answer a query. This
benefit is computed by the FE function, which estimates the number of joins needed
as the length of the shortest unindexed subpath of p. Let L(p) be the length of path p,
S be the set of existing indices, and L

′

(p, S) be the length of the shortest unindexed
subpath in p. L

′

(p, S) is the difference between the length of p and that of the longest
indexed subpath of p. For example, to compute the number of joins needed to evaluate
book/author(ba), we need to find L

′

(ba, S). Initially, S contains only element
indices, thus the longest indexed subpath of ba is the index on book(b) or the index
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on author(a). Therefore, L
′

(ba, S) = L(ba) − L(b)= 2 − 1 = 1. The number of
joins required to answer ba is one. That is, FE(ba, ba, S) = 1.

Next, we consider the benefit of Ip when it can partially answer a query. This benefit
is computed by the FD function. Like FE , FD estimates the number of joins needed to
answer the query. However, in this case, the number of joins needed is more than just
the length of an unindexed subpath of the query. The closer the length of p to the length
of unindexed subpath of the query, the higher benefit of Ip is. We use the difference
between the length of p and that of the query as the number of the joins that the index
cannot answer. For example, the index on ba can be used to answer baf, but only
partially. Initially, only element indices exist, the length of an unindexed subpath of
baf is L

′

(baf, S) = L(baf) − L(b) = 3 − 1 = 2. Since the index on ba cannot
completely answer baf, the benefit of the index needs to be reduced by the cost of the
join between ba and f. This join cost is estimated as the difference between the length
of baf and that of ba. Thus, the benefit of the index for query baf becomes L′(baf,
S)− (L(baf)− L(ba)) = L′(baf, S)− L(baf) + L(ba) = 2− 3 + 2 = 1. That is,
FD(ba, baf, S) = 1.

The benefit functions FE and FD are shown in Figure 8. In this figure, L
′

(p, S)
represents the length of the shortest unindexed subpath of path p, and L(p) represents
the length of the path p.

FE(p, pe, S) = L
′

(pe, S)

FD(p, pd, S) = L
′

(pd, S)− (L(pd)− L(p))

= L
′

(pd, S)− L(pd) + L(p)

Fig. 8. FE and FD for Ip (Without Statistics)

6 Configuration Enumeration
After the benefit of each CPI is computed using FE and FD in the index benefit algo-
rithm (Figure 6), the first two phases of the XIST algorithm (Figure 4) are completed.
In the third phase, XIST first selects the CPI with the highest benefit to the set of chosen
indices S. Since XIST takes the index interaction into account, it needs to recompute
the benefits of CPIs that have not been chosen.

The key idea in efficiently recomputing the benefits of CPIs is to recompute only
the benefits of the indices on paths that are affected by the chosen indices. A naı̈ve algo-
rithm would recompute the benefit of each CPI that has not been selected. In contrast,
XIST employs a more efficient strategy described below.

XIST considers three types of paths that are affected by a selected index on path p:
(a) subqueries that have not been evaluated and that contain p as a subpath, (b) paths
that are subpaths of p, and (c) paths that are not subpaths of p but are subpaths of paths
in (a). We call these categories type-A, type-B, and type-C respectively.

As an example of indices in each of these types, consider the following five candi-
date indices:

book/author (ba),
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book/author/first (baf),
author/first (af),
author/last (al), and
article/author/last (aal).

Also assume that the queries left to be evaluated are the following paths: baf and af.
Path baf is a type-A path with respect to path ba because path baf contains ba as
a subpath. On the other hand, path ba is a type-B path for path baf since path ba is
a subpath of path baf. Path af is a type-C path for path ba because path af is not a
subpath of path ba, but af is a subpath of baf which contains ba.

Using these relationships between selected paths and other unselected paths, we can
reduce the number of benefit re-computations for the unselected indices. We need to re-
compute the benefits of unselected indices because the benefits of these indices depend
on the existence of selected indices. The situation in which the benefits of one index
depends on the existence of other indices is called index interaction.

If we did not find such relationships between the selected indices and the unselected
indices, we could spend a lot of time in computing the benefits of many remaining
unselected indices. For example, suppose that the index on ba yields the maximum
benefit out of all candidate indices. Assume that the candidate indices include the paths
baf, af, al, and aal Assume also that the query workload consists of these following
paths: baf and af. Then, the index on ba is chosen first. The naı̈ve approach would
then recompute the benefits of the remaining four candidate indices. XIST chooses to
recompute only the benefits of the indices on baf (type-A) and on af (type-C). The
index on ba affects neither the benefit of the index on al nor the benefit of the index
on aal. XIST uses this property and does not recompute the benefits of these indices.

7 Experimental Evaluation
In this section, we present the results from an extensive experimental evaluation of
XIST, and compare it with current index selection techniques.

7.1 Experimental Setup
The XIST tool that we implemented is a stand-alone C++ application. It uses the Apache
Xerces C++ version 2.0 [22] to parse an XML schema. It also implements the selection
and benefit evaluation of candidate indices, and the configuration enumeration.

We then used the indices recommended by the XIST toolkit as an input to an native
XML DBMS that we are currently developing. This system implements stack-based
structural join algorithms [1]. It uses B+tree to implement the value index, and uses
a hash indexing mechanism to implement the path indices. It evaluates XML queries
as follows: if a path query matches an indexed pathname, the nodes matching the path
are retrieved from the path index. If there is no match, the DBMS uses the structural
join algorithm [1] to join indexed subpaths. Queries on long paths are evaluated using
a pipeline of structural join operators. The operators are ordered by the estimated car-
dinality of each join result, with the pair resulting in the smallest intermediate result
being scheduled first. A query with a value-based predicate is executed by evaluating
the value predicate first.
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In all our experiments, the DBMS was configured to use a 32 MB buffer pool. All
experiments were performed on an 1.70 GHz Intel Xeon processor, running Debian
Linux version 2.4.13.

7.2 Data Sets and Queries
We used the following four commonly used XML data sets: DBLP [19], Mondial [27],
Shakespeare Plays [14], and XMark benchmark [24]. For each data set, we generated
a workload of ten queries. These queries were generated using a query generator which
takes the set of all distinct paths in the input XML documents as input. This set is then
partitioned according to the path query length, generating subsets with path queries of
equal lengths. These subsets are further partitioned according to whether the query has
a value-based predicate. Ten queries are then randomly picked from the subsets using
the following criteria. First, a query length between two and the maximum length of
the paths in the data set is chosen randomly. Then, with a probability of 0.5, the chosen
path is appended with a value-based predicate.

As an example, using this generation method, some of the queries on the Plays data
set are shown below:

FM/P
/PLAY/ACT/EPILOGUE/SPEECH[SPEAKER=“KING”]
/PLAY/INDUCT/SPEECH/SPEAKER
PROLOGUE/SPEECH[SPEAKER=“Chorus”]

7.3 Experimental Results

We now present experimental results that evaluate various aspects of the XIST toolkit.
First, we demonstrate the effectiveness of the path equivalence class (EQ) in reducing
the number of candidate paths. Next, we present the experimental validation of the
cost model used for benefit analysis. Then, we compare the performance of XIST with
the performance of a number of alternative index selection schemes. We also show
the impact of the different types of inputs (namely query workload, XML schema and
statistics) on the behavior of the XIST toolkit. Finally, we analyze the performance of
all the index selection schemes when the workload changes over time.

The execution time numbers presented or analyzed in this paper are cold numbers,
i.e., the queries do not benefit from having any pages cached in the buffer pool from a
previous run of the system.

Effectiveness of Path Equivalence Classes To assess the effectiveness of path equiva-
lence class, we measure the number of paths and the number of path equivalence classes
in each data set. Note that paths in an equivalence class are represented by a single
unique path which is the smallest path pointing to the same destination node. There-
fore, the number of equivalence classes denotes the number of such unique paths.

Figure 9 plots the number of paths and the number of equivalence classes for all
the data sets used in this experimental evaluation. In this figure, DBLP1 and XMark1
represent those paths from DBLP and XMark with lengths up to five, and DBLP2 and
XMark2 represent those paths with lengths up to ten. As shown in Figure 9, the number
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Fig. 9. Number of Paths and Equivalence Classes
Path Index |p| Time (ms.) KI

FM/P 148 5 0.0338
SPEECH/SPEAKER 31028 1127 0.0363
SPEECH/LINE 107833 3872 0.0359Table 2. Path Index Access Cost

of equivalence classes is fewer than the number of total paths by 35%-60%. This result
validates our hypothesis that the number of candidate paths can be reduced significantly
using the XML schema to exploit structural similarities.

Experimental Validation of the Cost Models We validate the cost models presented
in Section 5.1 using one of the data sets: the Shakespeare Plays. The results presented
in Table 2 indicate a linear relationship between the path cardinality and the path index
access time. This linear relationship can be expressed as:

T (Ip) = KI ∗ |p| (4)

where T (Ip) is the time taken to retrieve results using an index on p and |p| is the
number of nodes matching p. From path cardinalities and times shown in Table 2 and
using Equation 4, the value of KI is approximately 0.04.

We also found that the join cost was proportional to the sum of the sizes of the sorted
input lists and the size of the output list. This linear relationship can be expressed as:

T (Ip1/p2
) = KJ ∗ (|p1|+ |p2|+ |p1/p2|) (5)

Using the path cardinalities and times shown in Table 3 and Equation 5, we determine
that KJ is approximately 0.09 for the structural join algorithm used in our experiments.

In the remaining experiments we use the values of KI and KJ that are determined
by this experiment.

Comparison of Different Indexing Schemes We then compare the performance of
the following sets of indices: indices on elements (Elem), indices on paths with length
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Path (p1/p2) |p1| |p2| |p1/p2| Time KJ

(ms.)
FM/P 37 148 148 30 0.09
SPEECH/SPEAKER 31028 31081 31081 9121 0.10
SPEECH/LINE 31028 107833 107833 22789 0.09Table 3. Path Join Cost

up to two (SP), indices suggested by XIST (XIST), and indices on the full path query
definitions (FP). The Elem index selection strategy is interesting because it is a minimal
set of indices to answer any path query. The SP follows the index selection technique
recently proposed by Kaushik et al. [16], which prefers to index on short paths over
long paths. FP is a set of indices that requires no join when evaluating paths without
value-based predicates.

The XIST toolkit is provided with information about an XML schema, data statis-
tics, and a query workload. When the workload information is available, all indexing
schemes built indices on only elements and/or paths that appear in the workload. When
there is no workload information, all indexing schemes, except FP, generate indices by
using the schema information. In this case, the candidate paths are paths found using
the schema.

All indexing schemes (Elem, SP, XIST, and FP) only build indices on paths without
value-based predicates. To evaluate paths with value-based predicates, a join operation
is used between the nodes returned from indices and the nodes that match the value
predicates. We choose to separate the value indices from a path indices to avoid having
an excessive number of indices – one for each possible different value-predicate. In our
experimental setup, all indexing schemes share the same value indices to evaluate paths
with value-based predicates.

Figure 10 shows the performance improvement of XIST over other indices for the
four experimental data sets. In this figure, the improvement is measured as:

T (I)− T (XIST )

T (I)

where T (I) is the execution time with the use of the index set I for evaluating all queries
in the workload.

The results shown in Figure 10 illustrate that XIST consistently outperforms all
other index selection methods for all the data sets. XIST is better than Elem and SP
because XIST requires fewer joins for evaluating the queries. XIST performs better than
FP largely because the use of path equivalence classes (EQs) while evaluating path
queries. In many cases, long path queries are equivalent to queries on a single element.
In such cases, if the size of the element index is smaller than the size of the path index,
XIST recommends using the element index to retrieve answer. On the other hand, FP
needs to access the larger path index. Another reason for the improved performance
with XIST is that the total size of XIST indices (including element indices and path in-
dices) is smaller than that of FP indices (including element indices and path indices).
The total size of XIST indices is smaller because it shares a single index among the
equivalent paths. Table 4 presents the sizes of data sets and indices for all data sets.
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Fig. 10. Performance Improvement of XIST

Impact of Input Information on XIST In this section, we present results investigating
the behavior of XIST for different combinations of input information. We compared the
execution times when using indices suggested by XIST with indices selected by other
index selection strategies. When the workload information is available, we only show
the performance of FP and XIST since it is much better than the performance of Elem
and SP. When the workload information is not available, we show the performance of
all indexing schemes, except FP, since FP cannot be generated without the workload
information.

Due to space limitations, in this paper we only present the results for DBLP and
XMark. DBLP represents a shallow data set (short paths), and XMark represents a deep
data set (long paths). The experimental results for these two data sets are representative
of the results for the other two data sets.
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Data Set Size Index Size (MB)
(MB) Elem SP FP XIST

DBLP 117 91 117 110 101
Mondial 2 2 3 3 3
Plays 8 80 86 85 81
XMark 11 27 27 27 27

Table 4. Sizes of Data Sets and Indices

In the following subsections, we first present experimental results evaluating the
index selection strategies when workload information is available. Then, we present
results for the case when workload information is not available.
Evaluation when Workload Information is Available
In this section, we compare the performance of the index selection method when the
workload information is available. The results for this experiment are presented in Fig-
ures 11 and 12. In these figures, the X-axis plots the number of indices that XIST rec-
ommends. For this experiment, we use this metric instead of the default metric which
is the available disk space (the input parameter k in Figure 4) because it allows us to
better evaluate the incremental additional benefit of selecting an additional index.

When the workload information is available, FP and XIST exploit the information
to build indices that can cover most of the queries. FP indices cover all paths without
value-based predicates in the workload. Thus, its index selection is close to optimal
(without any join). When using FP, the only joins that the database needs are the joins
between the returned nodes from the path index and the nodes that satisfy the value
predicates. In Figures 11-12, the number of FP indices is used to assign the initial
number of indices that the XIST tool generates.

The cost-based benefit evaluation estimates the benefits of indices more accurately
than the heuristic-based benefit evaluation. As shown in Figures 11-12, the execution
times of XIST with QW-Stats (QW-Schema-Stats) are usually smaller than the
execution times of XIST with QW (QW-Schema) at each point of index space. However,
as the number of indices increases, the discrepancy becomes smaller because the num-
ber of allowed indices is large enough to cover most indices that are critical to reduce
the overall workload evaluation time.

As opposed to the heuristic-based benefit function, the cost-based benefit function
guarantees that the more useful indices are chosen before the less useful indices. The
execution times of XIST with QW-Stats (QW-Schema-Stats) gradually decrease
as opposed to the execution times of XIST with QW (QW-Schema). This is particularly
noticeable in Figure 12. In this graph, comparing the execution times of XIST with QW,
the gap of the execution times between 20 and 21 indices is smaller than the gap of the
execution times between 21 and 22 indices. This indicates that with the heuristic-based
benefit function, it is possible for a less useful index to be chosen before a more useful
index. On the other hand, in the graph of the execution times of XIST with QW-Stats,
the gaps of the execution times for each index increment gradually decrease. This indi-
cates that the chosen index is more useful than other remaining candidate indices when
the cost-based benefit function is employed.
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Another important observation is that when the number of allowed indices is suffi-
ciently large, the performance of XIST with QW-Schema and with QW-Schema-Stats
are about the same, and are better than the performance of FP. This indicates that for
sufficiently large index space, the input information consisting of the workload and the
schema is adequate to achieve the good performance.

Evaluation when Workload Information is not Available
In this section, we compare the performance of the index selection methods when the
workload information is not available. The results for this experiment are presented in
Figures 13 and 14. In these figures, the X-axis plots the approximate total sizes of all the
indices in bytes (the default input parameter k in Figure 4). We use this metric because
a large incremental number of indices is required to decrease the execution time when
the workload information is not available. Often an index selection strategy will prefer
not to build an index even when there might be room to fit the index on disk (as the
index may have no additional benefit). In these figures, the index sizes for SP and Elem
methods are shown explicitly.

In Figure 13, after point A, when we increased the index space available to build
indices for XIST, the size of XIST grew at a small rate. The performance of XIST is
optimal at point B. At point C, XIST has additional index space, but XIST still suggests
the same set of indices as the set of indices at point B. In other words, the XIST toolkit
chooses only useful indices and these indices take only part of an available index space.

As shown in Figures 13-14, XIST and SP always outperform Elem. Compared to
SP, XIST is more desirable since it allows the system to make the tradeoff between
the performance and the size of indices. As the space available for building indices
increases, XIST starts outperforming SP. As shown in these figures, XIST indices not
only result in better performance, but are often smaller in size than the indices selected
by SP.
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Impact of Changing Workloads on Performance In the last experiment (correspond-
ing to Figures 13-14), we demonstrated that XIST consistently selects better indices
than the other methods even when the user workload is not static. In many situations,
a user workload may be available initially, but this workload may change over times as
new queries are gradually added. Thus, an index selection tool must gracefully deal with
the changing workload environment. In this section, we consider this case of changing
workloads.

For this experiment, the initial workload has ten queries. Then, we introduce ten
additional random queries to the workload, introducing two queries at at time. Con-
sequently, we have five workloads in addition to the initial training workload. This
strategy of using increasing number of queries in the workload allows us to evaluate the
effectiveness of the index selection strategies as the workload gradually changes.

For this experiment, we assume that the schema information, data statistics, and the
information of the training workload are available as inputs to all indexing schemes.
The Elem index selection strategy selects all element indices, including the elements
that do not appear in the training workload. The SP indices include all possible indices
on paths with length two, based on the schema. The FP indices are indices built on
paths that appear in the initial training workload. XIST handles the environment with
changing workloads by picking x% of indices based on the initial query workload,
and the remaining 100-x% of indices selected assuming that the query workload is not
available. In our experiments, x is set to 50.

For this experiment, each index selection strategy recommends indices based on the
initial training workload, and these indices are then used for the remaining workloads.

Figures 15 and 16 show the results of this experiment. In these figures, the Y-axis
represents the total execution times of executing all queries in the workload, and the
X-axis represents the number of new queries in each workload. When the number of
new queries is zero, there are ten queries in the workload. When the number of new
queries is ten, there are 20 queries in the workload.

As opposed to FP and Elem, XIST and SP scale well as new queries are introduced
to the workload. As shown in Figures 15 and 16, the query execution times for FP
and Elem grow rapidly as the workload changes. The reason for this rapid increase in
execution times is because the evaluation of the new queries requires many additional
joins. On the other hand, the execution times when using the XIST and SP indices only
increase gradually as new queries are added to the workload. XIST and SP perform
better because these two techniques identify a common set of paths, which are not too
specific and can hence be used to efficiently evaluate the new queries which may have
some common subexpressions with the initial training workload.

8 Related Work
Related work in index selection for XML documents spans many areas. This section
overviews related work in structural summary generation for semistructured documents,
path index design, and index selection.

Dataguides [11] provide concise and accurate summaries of all paths originating
from the root node in a semistructured document. While Dataguides assume schema-
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less data and represent only paths appear in a semistructured document, XIST EQs
represent structural summaries of documents using XML schema information.

In [20], Milo and Suciu describe T-indexes, a generalized path index structure for
semistructured documents. A particular T-index is associated with a set of paths that
match a path template. Their approach uses bisimulation relations to efficiently group
together nodes that are indistinguishable w.r.t to the given template into path equiva-
lence classes. If two nodes are bisimilar, they have the same node label and their par-
ents also share the same label. In the 1-index [20], data nodes that are bisimilar from
the root node stored in the same node in the index graph. The size of the 1-index can be
very large compared to the data size, thus A(k)-index [17] has been proposed to make a
trade off between the index performance and the index size. While k-bisimilarity [17] is
determined by using XML data, the EQs in this paper are determined by using an XML
schema. Although both k-bisimilarity and EQs group paths that lead to the nodes with
the same label, EQs group paths in an XML schema but k-bisimilarity group paths in
XML data.

Chung et al. have proposed APEX [8], an adaptive path index for XML documents.
The main contributions of APEX are the use of data-mining techniques to identify
frequently used subpaths, and the implementation of index structures that enable in-
crementally updates to match the workload variations. Like APEX, XIST exploits the
query workload to find indices that are most likely to be useful. On the other hand,
APEX does not distinguish the benefit of indices on two paths with same frequencies,
but XIST does. In addition, APEX does not exploit data statistics and XML schema in
index selection as opposed to XIST.

Recently, Kaushik et al. have proposed F&B-indexes that use the structural features
of the input XML documents [16]. F&B indexes are forward-and-backward indices
for answering branching path queries. Some heuristics in choosing indices, such as
prioritizing short path indices over long path indices are proposed [16]. On the other
hand, XIST takes many additional parameters, e.g., not only the path length, to assess
the usefulness of the indices. Furthermore, XIST exploits information from a schema
or a query workload while the index selection techniques [16] do not take advantage of
this information.

Many commercial relational database systems employ index selection features in
their query optimizers. For example, IBM’s DB2 Universal Database (UDB) uses DB2
Advisor [26], which recommends candidate indices based on the analysis of workload
of SQL queries and models the index selection problem as a variation of the knapsack
problem. The Microsoft SQL Server [3, 4] uses simpler single-column indices in an
iterative manner to recommend multi-column indices. That is, the indices on fewer
columns are considered before indices on more number of columns. If we applied this
concept in the index selection for XML query processing, we would miss an index
on a long path that is more useful than indices on short paths. XIST does not take
this approach, and it also groups a set of paths (a set of multiple-columns) that can
share the index. In addition, unlike the DB2 Advisor and the index selection tool for
Microsoft SQL Server, XIST can still suggest indices even when there is no query
workload information.
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Our work is closest to the index selection schemes proposed by Chawathe et al. [5]
for object oriented databases. Both the index selection schemes [5] and XIST find the
index interaction through the relationships between subpath indices and queries. Us-
ing subpaths to answer queries over longer paths has also been used in other database
domains, such as in the OLAP optimization that uses aggregated summary tables to
answer higher dimensional queries [13]. The key difference between [5] and XIST is
that XIST exploits the structural information to reduce the number of candidate indices
and optimize the query processing of XML queries while [5] only looks at the query
workload to choose candidate indices for evaluating object-oriented queries.

9 Conclusions
We describe XIST which recommends a set of path indices given a combination of a
query workload, a schema, and data statistics. By exploiting structural summaries from
schema descriptions, the number of candidate indices can be substantially reduced for
most XML data sets and workloads. XIST incorporates a robust benefit analysis tech-
nique using cost models or a simplified heuristic. It also models the ability of an index
for effectively processing sub-paths of a path expression. Our experimental evaluation
on standard XML data sets demonstrated that the indices selected by XIST perform
better and also have a smaller size compared to current techniques. In addition, XIST
can suggest a useful set of indices in various environments, such as when the workload
changes.

In our experimental evaluation, we had to tailor the cost model used in XIST to
accurately model the techniques that are implemented in our native XML system. How-
ever we believe that the general framework of XIST, with its use of equivalence classes
and efficient benefit recomputation methods, can be adapted for use with other DBMSs
with different implementation details and query algorithms. To adapt this general frame-
work to other systems, accurate cost models equations are required that account for the
system-specific details. Index selection techniques, like query optimization techniques,
rely heavily on the accurate methods of estimating system costs, which are often inter-
esting research topics by themselves. Within the scope of this paper, we have chosen
to focus on the general framework and algorithms of an XML index selection tool, and
have demonstrated that its effectiveness for our native XML DBMS.

In the future, we plan on extending XIST to include more types of path indices, such
as indices on regular path expressions and on twig queries. We also plan on exploring
the use of equivalence classes to assist in schema-driven XML query optimization.
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