
Developing Offline Web Application

Kanda Runapongsa Saikaew1, Art Nanakorn2, Thana Pitisuwannarat3

1,3Department of Computer Engineering 2Microsoft Thailand
Khon Kaen University 87/2 Wireless Road, Phatumwan

 Khon Kaen, Thailand, 40002 Bangkok, Thailand, 10330
krunapon@kku.ac.th1, i-arnana@microsoft.com2,t.pitisuwannarat@gmail.com 3

Abstract

Nowadays a large number of software is increasingly
available in the form of web application. The web is
where most software is moving for cost, convenience,
agility, and increased overall business value.
Millions users rely on web application to perform
their work such as using web mail and web calendar.
On the other hand, Internet is not always reliable.
Therefore, web application users are seriously
affected by disconnected Internet connection.
Developing web application that can be accessed
both online and offline is thus necessary. In this
paper, we propose the implementation of typical web
application that still provides users service despite of
being disconnected. This web development using
only open source tools which include Gears,
Javascript, MySQL, and PHP.

Key Words: Offline web application, Gears, Open
source

1. Introduction
In modern times, human daily activities almost

cannot live without web application in many ways.
They need to access web application to check their e-
mails, browse their calendar appointments, prepare
presentations with their online tools, update with the
latest news, or chat with their friends.

There are many reasons why web application has
been extensively widespread. People do not need to
have their own computers to use web application.
Students can use computers at school labs, office
workers can use ones at their offices, and other
groups of people can use ones at Internet Café. Not
only web application is suitable for people who do
not have their own personal computer, it is also
appropriate for people who have multiple machines.
Furthermore, people can browse their web

application through mobile devices, such as a smart
phone and a PDA.

Web application can be viewed as its own
computing platform. It is accessible no matter what
operating systems of the machines are. It is coded in
browser executable language such as HTML, PHP,
Java, and JavaScript. Using web browser to access
the application provides cross-platform compatibility.

From the view of software developers,
maintaining web application is much easier than
maintaining desktop application. The developers do
not need to announce the release of the next version,
make the CD/DVD for software installation, and
most importantly test the upgraded software on many
platforms that clients may use.

The number of web application users can be
estimated by the number of Internet users. According
to the report of Internet Usage Statistics [1], as of
December 31, 2008, the total number of Internet
users is 1,574,313,184 with the growth rate as 336.1
% during the years 2000-2008. As the statistics
show, the number of Internet users is extremely large
and growing fast. Any company that can sell their
products and services online will easily make huge
profit. The example of such company is Google Inc.
which still has its revenue grew 18 percent, to $5.7
billion for the fourth quarter of 2008 despite that this
period is during the deepening global recession [2].

When using traditional web application, users
have to go online. Consider a business man who uses
online applications to access his emails, keep a tab of
his appointments and to store his contact information
while he travels to meet with his customers. Since he
will be travelling most of the time, he may not access
to Internet connection all the time. When he is
offline, he can no longer access his favorite online
applications.

 In real situation, it is possible that we cannot
access the web application because of several reasons
such as overloading web server and unreliable

mailto:t.pitisuwannarat@gmail.com3
mailto:i-arnana@microsoft.com
mailto:krunapon@kku.ac.th

Internet service provider. Therefore, accessing web
application when users are offline becomes
important.

W3C also realizes the need for offline web
application as it plans to include the support of
offline web application in HTML5 [3]. The
specification aims to address this by providing two
solutions: 1) a SQL-based database API for storing
data locally and 2) an offline application HTTP cache
to make sure applications are available even when the
user is disconnected to their network. Currently
Firefox 3 [4] is planning to support these capabilities
by implementing online/offline events. It will be
interesting to see how the other browsers support this
specification.

Several tools are offered in developing offline
web application, such as using Gears [5], Microsoft
Silverlight [6], Adobe Air [7].

Gears, developed by Google, is an open source
browser extension that enable offline web
applications. Developer can call Gears APIs to create
an offline web application by using Javascript. While
Gears is free and open, other tools are proprietary.

Microsoft Silverlight plans to include offline
feature in the future. Developers also have to
know .NET programming technique instead of
typical web application development like Gears.

Adobe AIR, based on Flash technology, enables
application to be able to work offline but developers
must have specific knowledge about Flash and AIR
platform.

In term of developers support and community,
Gears has provided several updated tutorial and
samples. It also has active and well-participated
Gears discussion groups as well as Gears blog to
keep up to date on Gears.

Therefore, we choose to develop offline web
applications using Gears since it is an open source,
consists of complete features to enable offline
application, and has great online resources for
developers.

In this paper, we present our developed offline
user registration web application using Gears which
can operate when users are in both online and offline
modes. We choose to implementation registration
web application because it is common and widely
used in many real world applications.

Although there have been several web
applications that make offline using Gears, we have
not found sample codes of a simple web application
work offline with the codes that synchronize local
data with server data. In Gears API Documentation
and manual (http://code.google.com/apis/gears/),
such sample also does not exist. Thus the explanation

of the development should be beneficial to several
web developers. Furthermore, the described
implementation approach can apply to other types of
web application easily. Figure 1 illustrates the
relationship between the Gears-enabled client and the
web server

Figure 1. Gears­enabled client and server

The structure of the paper is as follows. Section 2
describes about background and related work.
Section 3 then explains about web application
development followed by experimental result in
Section 4. Finally, we conclude in section 5.

2. Background and related work
Gears is an open source web browser extension

that enables users to use web application even though
they are in offline mode and enables more powerful
web applications features. Nevertheless, the goal of
Gears is not just to enable offline application, but to
bridge the gap between web application and desktop
application. Users can view the browser as a
standard, but powerful, virtual machine for
applications which make the operating system
irrelevant.

To use Gears [8], users only need to install Gears
browser extension. Using Gears, a web application
can cache the data when the web application is
offline. It also can synchronize the data in cache with
the data at the server when it is online again. It also
consists of a local server which is to cache and
provide resources without needing to contact a
server.

Specifically, Gears modules [9] include 1)
Database module, which can store data locally by
using SQLite. 2) WorkerPool module, which
provides parallel execution of JavaScript code 3)
LocalServer module, which caches and serves
application resources such as HTML, JavaScript, and
images 4) Desktop module, which lets web

applications interact more naturally with the desktop
and 5) Geolocation module, which lets web
applications detect the geographical location of their
users.

Gears has enabled many real web applications to
work offline such as YouTube, WordPress, Google
Reader, and Gmail. In this section, we will describe
some of such applications as follows:

YouTube uses Gears as an alternative for users to
upload their large size videos [10] as shown in Figure
2. Gears breaks typical HTTP file upload limitations
such as limited file size, time and so on. Using Gears,
users can now upload files larger than 100 MB by
using just their Gears enabled web browsers.

Figure 2. YouTube video upload with Gears [10]

With Gears, WordPress can speed up every page
load and enable users to blog faster. WordPress with
Gears will store images, JavaScript libraries and CSS
files of admin page on the client local hard drive and
will not download them from the web server each
time client requests. Thus, it should speed up when
the connection traffic is busy.

Google itself also exploits Gears in their products,
such as Google Reader, Google Docs, and Gmail.
With Gears, Google Reader allows subscribers to
access the RSS feeds even when they are offline.
Using this technology, Google Reader enables users
to store 2,000 RSS feeds on their local machine to
read it any time [12]. They can also tag or star the
feeds and which will be synchronize back to the
server automatically when the client goes online.

Recently, Google rolls out a Gears version of
Gmail that will be available to users. Using browser
with Gears plug-in, Gmail detects when users are
offline. It caches users’ e-mails so that users can read,
reply, search, add stars, and label them. When users
are back to the Internet again, Gmail sends all the
messages. Users can also open attachments. [13]

As we see from many sample web applications
previously described, Gears enable web applications
to work offline and faster. Although Gears are useful
for almost all web applications, it is unsuitable for
real-time web applications that their data is
continuously updated such as the web application that
monitors and displays traffic.
3. Web application development

In this section, we will describe about the
development of our web application which is to
accept registration from students for attending a
training. We choose to illustrate this web application
because registration process is generally in almost all
web applications. In the following subsections, first
we present the web interface and its architecture then
we explain server-side script and finally we present
client-side script. The interface of this web
application is shown in Figure 3.

Figure 3. Registration web application

From Figure 3, this web application will ask the
user to fill out the information which includes first
name, last name, year, phone, and email. After the
user fills out all information, and press button
“Register”, the list of registered users will be updated
as shown on the bottom part of Figure 3. The user
information will be saved in a local database. When
the user browser is connected to the Internet, the
application will be synchronized with other users’
information in the server database.

To develop an offline web application using
Gears, we need to install Gears plug-in with his
browser. We also need to check whether the client’s
browser has been installed with Gears plug-in.
Then,we need to call Gears APIs from his client-side
script. The client-side script has to call Gears
Database API in order to create a local database. To
call server-side script asynchronously, we use Gears
HttpRequest API. In addition, the client-side script
needs to include the codes that copy the data from a
local database to a server database and vice versa in

order to synchronize data. We copy local data to a
server database whenever the new data has been
inserted and copy server data to a local database at
the beginning of the client-script code.

The development details are as follows:
1. Install Gears plug-in [14]. We need to detect
whether or not Gears is installed on a user's system
before calling the APIs and also to determine when to
display an installation prompt to the user. A web
application developer using Gears should always
initialize Gears using gears_init.js which can be
downloaded [14].

<script src="gears_init.js"></script>
<script>
 if (!window.google || !google.gears) {
 location.href= "http://gears.google.com/?
action=install&
message=<your welcome message>" +
 "&return=<your website url>";
 }
</script>

Figure 4. Code to check Gears installation

2. Store data in a local database. In this step, we
use Gears Database API to store data in SQLite
database system. Figure 5 shows the code that we use
to open a database and create a table.

try {
 db =
google.gears.factory.create('beta.database');

 if (db) {
 db.open('db');
 db.execute('create table if not exists users' +
 ' (firstname varchar(255),

lastname varchar(255), year integer,
phone varchar(255),
email varchar(255), timestamp int)');

….
} catch (ex) {

alert(ex.message);
}

Figure 5. Code to use a local database

3. Develop the server-side script. The script is to
access and update data at a server database. It accepts
a parameter called “method” and then call SQL
statements according to the method value.

<?php
..

// connect database system and select database
mysql_select_db("registerdb")
or die(mysql_error());
if ($method == "access") {

// use SQL statements to retrieve data
} else if ($method == "update") {

// use SQL statements to insert data
}

?>
Figure 6. Server-side script to manage data

4. Synchronize data between server and local
databases. In synchronization, we copy data from a
server database to a local database and copy newly
inserted data from clients to a server database.

4.1 Copy data from the server database to the
local database. In this process, there are two main
steps. The first step is to call server script to retrieve
data from the server database. In this program, we
use HttpRequest API [14] to call the server side script
with method="access" which means that we want to
access or read server data. The second step is to
tokenize data received from the server database and
insert such data into the local database. We use split
PHP function to separate different records in the
same response and to separate columns in the same
record. We write the code to process data received
from server which is when the readyState of Gears
HttpRequest is equal to 4.

Figure 7 shows partial code that uses HttpRequest
API to access sthe erver-side script and insert data
from the server database to the local database.

var sync_script =
'http://host/directory/sync_data.php';
…
var request =
google.gears.factory.create('beta.httprequest');
request.open('POST', sync_script);
request.setRequestHeader("Content-
type","application/x-www-form-urlencoded");
request.onreadystatechange = function() {
if (request.readyState == 4) {

var data = request.responseText;
var rows = data.split("
");
// process each row data from server script
// check if data exists in local database
// if it doesn’t exist, insert data received
db.execute('insert into users(firstname, lastname,

year, phone, email, timestamp) values
(?, ?, ?, ?,?,?)', [f,l,y,p,e,t]);

…

};
request.send(params);
Figure 7. Code to copy data from server to client

4.2 Copy data from local database to server
database. In this process, there are two main steps.
The first step is to form parameters of server script to
insert data in server database. The second step is to
call server script with method = "update" which
means that the client code would like to update data
by inserting new rows in the local database.

var request =
google.gears.factory.create('beta.httprequest');
var
params="method=update&f="+firstnames[index];
params += "&l="+lastnames[index];
params += "&y="+years[index];
params += "&p="+phones[index];
params += "&e="+emails[index];
…
request.open('POST', sync_script);
request.setRequestHeader("Content-
type","application/x-www-form-urlencoded");
request.send(params);

Figure 8. Code to copy data from client to server

4. Experimental Result
In the experimental result, we need to illustrate

that each client will see the same application data
despite that he/she also stores data locally on his/her
computers. In effect, this tests whether we can
synchronize data which happens when users are
online. We also need to show that the web
application can work offline. Thus, the experimental
result is divided into two scenarios: 1) Testing
whether the application can store data locally and
synchronize with data at server when it is online and
2) Testing whether the application can work offline.

4.1 Synchronizing Data When Online
We have set up scenario that two concurrent users
being registering on the web application. Figure 9
shows user “Art” fills the registration form while
there are three registered users. In the meantime, user
“Thana” is also trying to register when there are also
three registered users as shown in Figure 10.

 Figure 9. User “Art” is regisering
After both users made registration, user “Art”

refreshes the page and found records of his newly
registered users and the total number of registered
users is six as shown in Figure 11. User “Thana” also
found the same result that user “Art” found. This is
shown in Figure 12.

Figure 10. User “Thana” is also registering

Figure 11. The result on user “Art”’s computer

Figure 12. The result on user “Thana”’s computer

4.2 Using the Application When Offline
Figure 13 shows that a client can still see the web
application with his browser while it is in work
offline mode. Figure 14 illustrated that the user still
can access and fill the web application form.

Figure 13. Browser with Work Offline mode

Figure 14. Using web application while offline

5. Conclusion
 In this paper, we have presented an approach to
develop offline web application that can be applied to
typical web application. Web application is
significantly used widely by thousand millions of
users while the network connectivity sometimes
unreliability and slow. Thus, web developers should
have the ability of enable web application to work
offline and improve performance by using existing
open source tools, such as Gears.
 There have been many web applications that work
while offline but these web applications are
developed by a large software company or
organization such as Google and WordPress. In this
paper, we illustrate techniques in making typical web
application offline with open source tools. Our
approach can be applied to many web applications

that are developed by a single developer or a small
group of software house. In the future, we are
interested to improve the performance of web
application by using WorkerPool module.

References

[1] Miniwatts Marketing Group. “World Internet Usage
Statistics News and World Population Stats” [online]
2008 [cited 2009 Feb 15]. Available from:
http://www.Internetworldstats.com/stats.htm

[2] Miguel Helft, “Google Beats Forecast Even as Its
Profit Tapers” [online] 2009 [cited 2009 Feb 15].
Available from:
http://www.Internetworldstats.com/stats.htm

[3] W3C Working Group, “Offline web Applications”
[online] 2008 [cited 2009 Feb 15]. Available from
http://www.w3.org/TR/offline-webapps/

[4] Nickolay Ponomarev, “Online and offline events”
[online] 2008 [cited 2009 Feb 15]. Available from
https://developer.mozilla.org/En/Online_and_offline_e
vents

[5] Google, “Gears: Improving your browser” [online]
2008 [cited 2009 Feb 15]. Available from
http://gears.google.com/

[6] Microsoft, “The Official Microsoft Silverlight Site”,
[online] 2008 [cited 2009 Feb 15]. Available from
http://silverlight.net/

[7] Adobe, “Adobe AIR” [online] 2009 [cited 2009 Feb
15]. Available from
http://www.adobe.com/products/air/

[8] Sriram Balaji, “Infosys | Microsoft: Offline web
Applications” [online] 2008 [cited 2009 Feb 15].
Available from
http://www.infosysblogs.com/microsoft/2008/08/offli
ne_web_applications_1.html

[9] Wikipedia, “Gears (Software)” [online] 2009 [cited
2009 Apr 10]. Available from http://en.wikipedia.org/
wiki/Google_Gears

[10] Shoaib Hashmi, “’Google Gears’ now lets you upload
YouTube videos up to 1 GB” [online] 2008 [cited
2009 Feb 15]. Available from http://startupmeme.com/
google-gears-lets-you-upload-youtube-videos-upto-1-
gb/

[11] James, “Wordpress 2.6 and Google Gears:geniosity
musing” [online] 2008 [cited 2009 Feb 15] . Available
from http://www.geniosity.co.za/musings/wordpress/
wordpress-26-and-google-gears/

[12] Google, “Google Reader – Offline reading” [online]
2009 [cited 2009 Feb 15]. Available from
http://www.google.com/help/reader/offline.html

[13] Erick Schonfeld, “Gmail Goes Offline with Google
Gears” [online] 2009 [cited 2009 Feb 15]. Available
from http://www.techcrunch.com/2009/01/27/gmail-
goes-offline-with-google-gears/

[14] Google, “Gears API – Google Code” [online] 2009
[cited 2009 Feb 15]. Available from
http://code.google.com/apis/gears/architecture.html

http://code.google.com/apis/gears/architecture.html
http://www.techcrunch.com/2009/01/27/gmail-goes-offline-with-google-gears/
http://www.techcrunch.com/2009/01/27/gmail-goes-offline-with-google-gears/
http://www.google.com/help/reader/offline.html
http://www.geniosity.co.za/musings/wordpress/wordpress-26-and-google-gears/
http://www.geniosity.co.za/musings/wordpress/wordpress-26-and-google-gears/
http://startupmeme.com/google-gears-lets-you-upload-youtube-videos-upto-1-gb/
http://startupmeme.com/google-gears-lets-you-upload-youtube-videos-upto-1-gb/
http://startupmeme.com/google-gears-lets-you-upload-youtube-videos-upto-1-gb/
http://en.wikipedia.org/wiki/Google_Gears
http://en.wikipedia.org/wiki/Google_Gears
http://www.infosysblogs.com/microsoft/2008/08/offline_web_applications_1.html
http://www.infosysblogs.com/microsoft/2008/08/offline_web_applications_1.html
http://www.adobe.com/products/air/
http://silverlight.net/
http://gears.google.com/
https://developer.mozilla.org/En/Online_and_offline_events
https://developer.mozilla.org/En/Online_and_offline_events
http://www.w3.org/TR/offline-webapps/
http://www.internetworldstats.com/stats.htm
http://www.internetworldstats.com/stats.htm

	Abstract

