
Databases

Dr. Kanda Runapongsa Saikaew
Computer Engineering Department

Khon Kaen University
http://twitter.com/krunapon

SQLite and Content Providers

● SQLite offers a powerful SQL database library that provides
a robust persistence layer over which you have total control

● Content Providers offer a generic interface to any data
source by decoupling the data storage layer from the
application layer

● By default, access to a database is restricted to the
application that created it

● Content Providers offer a standard interface your
applications can use to share data with and consume data
from other applications— including many of the native data
stores

Introducing SQLite Databases

● Using SQLite you can create independent relational
databases for your applications

● Use them to store and manage complex, structured
application data

● Android databases are stored in the
/data/data/<package_name>/databases folder on your
device (or emulator)

● By default all databases are private, accessible only by the
application that created them

● In particular, when you’re creating databases for resource-
constrained devices (such as mobile phones), it’s important
to normalize your data to reduce redundancy.

Introducing Content Providers

● Content Providers provide an interface for publishing and
consuming data, based around a simple URI

 addressing model using the content:// schema
● They let you decouple the application layer from the data

layer, making your applications data-source agnostic by hiding
the underlying data source

● Shared Content Providers can be queried for results,
existing records updated or deleted, and new records added

● Many native databases are available as Content Providers,
accessible by third-party applications, including the phone’s
contact manager, media store, and other native databases

What is SQLite?

● SQLite is a well regarded relational database management
system (RDBMS)

● It is
○ Open-source
○ Standards-compliant
○ Lightweight
○ Single-tier

● It has been implemented as a compact C library that’s
included as part of the Android software stack

● SQLite has a reputation for being extremely reliable and is
the database system of choice for many consumer
electronic devices, including several MP3 players, the
iPhone, and the iPod Touch.

SQLite vs. Traditional RDBMs

● Lightweight and powerful, SQLite differs from many
conventional database engines by loosely typing each
column, meaning that column values are not required to
conform to a single type

● Instead, each value is typed individually for each row. As a
result, type checking isn’t necessary when assigning
or extracting values from each column within a row

● SQLite is a "zero-configuration" database engine.
Programs that use SQLite require no administrative
support for setting up the database engine before
they are run

http://www.sqlite.org/zeroconf.html

DBSample.java (1/2)
package edu.kku.android;
import java.util.List;
import android.app.Activity;
import android.os.Bundle;
import android.util.Log;
import android.widget.TextView;
public class DBSample extends Activity {
 private TextView output;
 private DBHelper dh;
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 this.output = (TextView) this.findViewById(R.id.out_text);
 this.dh = new DBHelper(this);
 this.dh.deleteAll();

DBSample.java (2/2)

 this.dh.insert("Lab 8: Database and Content Provider");
 this.dh.insert("Lab 9: Location-based Services");
 this.dh.insert("Lab 10: Calling API and Working in the
Background");
 List<String> names = this.dh.selectAll();
 StringBuilder sb = new StringBuilder();
 sb.append("Names in database:\n");
 for (String name : names) {
 sb.append(name + "\n");
 }
 Log.d("EXAMPLE", "names size - " + names.size());
 this.output.setText(sb.toString());
 }
}

DBHelper (1/3)

public class DBHelper {
 private static final String DATABASE_NAME = "example.db";
 private static final int DATABASE_VERSION = 1;
 private static final String TABLE_NAME = "table1";
 private Context context;
 private SQLiteDatabase db;
 private SQLiteStatement insertStmt;
 private static final String INSERT = "insert into "
 + TABLE_NAME + "(name) values (?)";
 public DBHelper(Context context) {
 this.context = context;
 OpenHelper openHelper = new OpenHelper(this.context);
 this.db = openHelper.getWritableDatabase();
 this.insertStmt = this.db.compileStatement(INSERT);
 }

DBHelper (2/3)
public long insert(String name) {
 this.insertStmt.bindString(1, name);
 return this.insertStmt.executeInsert(); }
public void deleteAll() {
 this.db.delete(TABLE_NAME, null, null); }
public List<String> selectAll() {
 List<String> list = new ArrayList<String>();
 Cursor cursor = this.db.query(TABLE_NAME, new String[] {
"name" }, null, null, null, null, "name desc");
 if (cursor.moveToFirst()) {
 do {
 list.add(cursor.getString(0));
 } while (cursor.moveToNext());
 }
 if (cursor != null && !cursor.isClosed()) {
 cursor.close();
 }
 return list; }

DBHelper (3/3)
private static class OpenHelper extends SQLiteOpenHelper {
 OpenHelper(Context context) {
 super(context, DATABASE_NAME, null,
DATABASE_VERSION); }
 @Override
 public void onCreate(SQLiteDatabase db) {
 db.execSQL("CREATE TABLE " + TABLE_NAME +
 "(id INTEGER PRIMARY KEY, name TEXT)"); }
 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion,
int newVersion) {
 Log.w("Example", "Upgrading database, this will drop
tables and recreate.");
 db.execSQL("DROP TABLE IF EXISTS " +
TABLE_NAME);
 onCreate(db);
 }}

Layout res/main.xml
<?xml version="1.0" encoding="utf-8"?>
<ScrollView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 <LinearLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <TextView android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello"
 android:textColor="#FFB273"/>
 <TextView android:id="@+id/out_text"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:textColor="#D9F970" android:text="" />
 </LinearLayout></ScrollView>

DBSample Result

Accessing Android SQLite Data

● Android data in SQLite is stored in /data/data/
[PACKAGE_NAME]/databases

● To access the database, you need to start your
application and then open the terminal or the
command prompt window and type with command

○ adb -e shell
● Then you access the database with command

○ sqlite3 <database name>
● Once you are in sqlite3 session, you can learn

all commands that you can use by typing
○ .help

Android SQLite Database

SQLiteOpenHelper

● SQLiteOpenHelper is an abstract class used to implement
the best practice pattern for creating, opening, and
upgrading databases

● By implementing an SQLite Open Helper you hide the logic
used to decide if a database needs to be created or
upgraded before it’s opener

● To use an implementation of the helper class, create a new
instance, passing in the context, database name, and
current version, and a CursorFactory (if you’re using one).

● Call getReadableDatabase or getWritableDatabase to open
and return a readable/writable instance of

● the underlying database

Revisited To-Do List (Saving State)

● Please download and modify the To-Do List sample code in
chapter 6 of Professional Android 2 Application
Development and then modify these things

○ Modify the display to also show time of task to do
○ Change the color to be what you want

● Saving activity preferences
○ If you want to save Activity information that doesn’t need

to be shared with other components (e.g., class instance
variables), you can call Activity.getPreferences()
without specifying a Shared Preferences name

○ Access to the returned Shared Preferences map is
restricted to the calling Activity

Saving Activity State

protected void onPause() {
 super.onPause();

 // Get the activity preferences object.
 SharedPreferences uiState = getPreferences(0);
 // Get the preferences editor.
 SharedPreferences.Editor editor = uiState.edit();
 // Add the UI state preference values.
 editor.putString(TEXT_ENTRY_KEY, myEditText.getText().
toString());
 editor.putBoolean(ADDING_ITEM_KEY, addingNew);
 // Commit the preferences.
 editor.commit();
 }

Restoring Activity State

private void restoreUIState() {
 // Get the activity preferences object.
 SharedPreferences settings = getPreferences(0);
 // Read the UI state values, specifying default values.
 String text = settings.getString(TEXT_ENTRY_KEY, "");
 Boolean adding = settings.getBoolean(ADDING_ITEM_KEY,
false);
 // Restore the UI to the previous state.
 if (adding) {
 addNewItem();
 myEditText.setText(text);
 }
 }

Saving and Restoring Instance State

● To save Activity instance variables, Android offers a
specialized variation of Shared Preferences.

● By overriding an Activity’s onSaveInstanceState event
handler, you can use its Bundle parameter to save UI
instance values.

● Store values using the same get and put methods as shown
for

● Shared Preferences, before passing the modified Bundle
into the superclass’s handler

● Programmers can save and restore instance state by
overriding methods onSaveInstanceState and
onRestoreInstanceState

Saving Instance State

 private static final String SELECTED_INDEX_KEY ="
SELECTED_INDEX_KEY";
@Override
 public void onSaveInstanceState(Bundle outState) {
 outState.putInt(SELECTED_INDEX_KEY, myListView.
getSelectedItemPosition());
 super.onSaveInstanceState(outState);
 }

● This handler will be triggered whenever an Activity completes its active
lifecycle, but only when it’s not

● being explicitly finished (with a call to finish).

Restoring Instance State

@Override
 public void onRestoreInstanceState(Bundle
savedInstanceState) {
 int pos = -1;
 if (savedInstanceState != null)
 if (savedInstanceState.containsKey
(SELECTED_INDEX_KEY))
 pos = savedInstanceState.getInt
(SELECTED_INDEX_KEY, -1);
 myListView.setSelection(pos);
 }

To Do List with State Saving (1/5)

● Click button Menu to display options menu

To Do List with State Saving (2/5)

To Do List with State Saving (3/5)

To Do List with State Saving (4/5)

To Do List with State Saving (5/5)
● Press at the view long enough to see the context

menu

Revisited To-Do List (Using Database)

● In the previous version of To-Do list, after we close the
program and the emulator, when we open the program
again, all to-do items disappear

● Now we will save all to-do items in a database
● To-Do List sample code in chapter 7 of Professional Android

2 Application
● After you are done with this, Your to-do items will now be

saved between sessions

To Do Items in a Database

Students DB (1/6)

Students DB (2/6)

Students DB (3/6)

Students DB (4/6)

Students DB (5/6)

Students DB (6/6)

Data in SQLite

References

● Charlie Collins, "Android SQLite Basics: creating and using a
database, and working with sqlite3" http://www.screaming-
penguin.com/node/7742

● Reto Meier, "Professional Android 2 Application,
Development", http://www.wrox.
com/WileyCDA/WroxTitle/Professional-Android-2-Application-
Development.productCd-0470565527,descCd-DOWNLOAD.html

