
User Interface: Layout

Asst. Prof. Dr. Kanda Runapongsa Saikaew
Computer Engineering
Khon Kaen University

http://twitter.com/krunapon

Agenda

● User Interface
● Declaring Layout
● Common Layouts

User Interface

● View Hierarchy
● Layout
● Widgets
● UI Events
● Menus

Objects in User Interface

● In an Android application, the user interface is built
using View and ViewGroup objects

● There are many types of views and view groups, each
of which is a descendant of the View class

● View objects are the basic units of user interface
expression on the Android platform

● The View class serves as the base for subclasses
called "widgets," which offer fully implemented UI
objects

● The ViewGroup class serves as the base for
subclasses called "layouts"

http://developer.android.com/reference/android/view/View.html
http://developer.android.com/reference/android/view/ViewGroup.html
http://developer.android.com/reference/android/view/View.html

A View Object

● A View object is a data structure whose properties
store the layout parameters and content for a specific
rectangular area of the screen

● A View object handles its own measurement, layout,
drawing, focus change, scrolling, and key/gesture
interactions for the rectangular area of the screen in
which it resides

● As an object in the user interface, a View is also a
point of interaction for the user and the receiver of the
interaction events

View Hierarchy

● On the Android platform, you define an Activity's UI
using a hierarchy of View and ViewGroup nodes, as
shown in the diagram below

● This hierarchy tree can be as simple or complex as
you need it to be

○ You can build it up using Android's set of
predefined widgets and layouts, or with custom
Views that you create yourself

● In order to attach the view hierarchy tree to the screen
for rendering, your Activity must call
the setContentView()method and pass a reference to
the root node object

http://developer.android.com/reference/android/app/Activity.html#setContentView(int)

View Hierarchy Sample

Drawing Process in View Hierarchy

● The Android system receives the reference to the root
node object and uses it to invalidate, measure, and
draw the tree

● The root node of the hierarchy requests that its child
nodes draw themselves — in turn, each view group
node is responsible for calling upon each of its own
child views to draw themselves

● The children may request a size and location within
the parent, but the parent object has the final decision
on where how big each child can be

Elements Parsing Order

● Android parses the elements of your layout in-order
(from the top of the hierarchy tree), instantiating the
Views and adding them to their parent(s)

● The tree is traversed in-order, this means that parents
will be drawn before (i.e., behind) their children, with
siblings drawn in the order they appear in the tree

● Because these are drawn in-order, if there are
elements that overlap positions, the last one to be
drawn will lie on top of others previously drawn to that
space

Drawing the Layout

● Drawing the layout is a two pass process: a measure
pass and a layout pass

● The measuring pass is implemented in measure(int,
int) and is a top-down traversal of the View tree

● Each View pushes dimension specifications down the
tree during the recursion

● The second pass happens in layout(int, int, int, int) and
is also top-down.

● During this pass each parent is responsible for
positioning all of its children using the sizes computed
in the measure pass.

http://developer.android.com/reference/android/view/View.html#measure(int, int)
http://developer.android.com/reference/android/view/View.html#measure(int, int)
http://developer.android.com/reference/android/view/View.html#layout(int, int, int, int)

The Measure Pass

● The measure pass uses two classes to communicate
dimensions

○ The View.MeasureSpec class is used by Views to
tell their parents how they want to be measured
and positioned

○ The base LayoutParams class just describes how
big the View wants to be for both width and height

http://developer.android.com/reference/android/view/View.MeasureSpec.html

View.MeasureSpec
MeasureSpecs are used to push requirements down the tree
from parent to child. A MeasureSpec can be in one of three
modes:

● UNSPECIFIED: This is used by a parent to determine the
desired dimension of a child View

● EXACTLY: This is used by the parent to impose an exact
size on the child. The child must use this size, and
guarantee that all of its descendants will fit within this size

● AT_MOST: This is used by the parent to impose a
maximum size on the child. The child must guarantee that it
and all of its descendants will fit within this size

LayoutParams

For each dimension, LayoutParams can specify one of:

● An exact number
● FILL_PARENT, which means the View wants to be as

big as its parent (minus padding)
● WRAP_CONTENT, which means that the View wants

to be just big enough to enclose its content (plus
padding)

Supporting Multiple Screens

● Android runs on a variety of devices that offer different
screen sizes and densities

● For applications, the Android system provides a
consistent development environment across devices
and handles most of the work to adjust each
application's user interface to the screen on which it is
displayed

● The quantity of pixels within a physical area of the
screen; usually referred to as dots per inch (dpi)

● The density-independent pixel (dp) is equivalent to
one physical pixel on a 160 dpi screen, which is the
baseline density assumed by the system for a
"medium" density screen.

The Relationship between dp, px, and dpi

● At runtime, the system transparently handles any
scaling of the dp units, as necessary, based on
the actual density of the screen in use

● The conversion of dp units to screen pixels is
simple: px = dp * (dpi / 160)

● For example, on a 240 dpi screen, 1 dp equals
1.5 physical pixels

● You should always use dp units when defining
your application's UI, to ensure proper display of
your UI on screens with different densities.

Screen Characteristic: Density

● ldpi Resources for low-density (ldpi) screens (~120dpi).
● mdpi Resources for medium-density (mdpi) screens

(~160dpi). (This is the baseline density.)
● hdpi Resources for high-density (hdpi) screens (~240dpi).
● xhdpi Resources for extra high-density (xhdpi) screens

(~320dpi).
● nodpi Resources for all densities. These are density-

independent resources. The system does not scale resources
tagged with this qualifier, regardless of the current screen's
density.

Layout

● The most common way to define your layout and
express the view hierarchy is with an XML layout
file
○ XML offers a human-readable structure for the

layout, much like HTML
● Each element in XML is either a View or

ViewGroup object (or descendant thereof)
● View objects are leaves in the tree
● ViewGroup objects are branches in the tree (see

the View Hierarchy figure above)

XML Layout Elements

● The name of an XML element is respective to the Java
class that it represents

● A <TextView> element creates a TextView in your UI
● A <LinearLayout> element creates

a LinearLayout view group
● When you load a layout resource, the Android system

initializes these run-time objects, corresponding to the
elements in your layout

● Some pre-defined view groups offered by Android
(called layouts) include LinearLayout, RelativeLayout,
TableLayout, GridLayout and others

http://developer.android.com/reference/android/widget/TextView.html
http://developer.android.com/reference/android/widget/LinearLayout.html

Widget

● A widget is a View object that serves as an interface
for interaction with the user

● Android provides a set of fully implemented widgets,
like buttons, checkboxes, and text-entry fields, so you
can quickly build your UI

● Some widgets provided by Android are more complex,
like a date picker, a clock, and zoom controls

● But you're not limited to the kinds of widgets provided
by the Android platform

○ If you'd like to do something more customized and
create your own actionable elements, you can, by
defining your own View object or by extending and
combining existing widgets.

UI Events

● Once you've added some Views/widgets to the UI, you
probably want to know about the user's interaction with
them, so you can perform actions

● To be informed of UI events, you need to do one of two
things

○ Define an event listener and register it with the View
○ Override an existing callback method for the View

Defining an Event Listener

● More often than not, this is how you'll listen for events
● The View class contains a collection of nested

interfaces named On<something>Listener, each with a
callback method called On<something>()

● If you want your View to be notified when it is "clicked"
(such as when a button is selected)

○ Implement OnClickListener and define its onClick()
 callback method (where you perform the action
upon click)

○ Register it to the View with setOnClickListener()

http://developer.android.com/reference/android/view/View.html#setOnClickListener(android.view.View.OnClickListener)

Overriding an Existing Callback Method

● This is what you should do when you've implemented your own
View class and want to listen for specific events that occur
within it

● Example events you can handle include when the screen is
touched (onTouchEvent()), when the trackball is moved
(onTrackballEvent()), or when a key on the device is pressed
(onKeyDown())

● This allows you to define the default behavior for each event
inside your custom View and determine whether the event
should be passed on to some other child View

● Again, these are callbacks to the View class, so your only
chance to define them is when you build a custom component

http://developer.android.com/reference/android/view/View.html#onTouchEvent(android.view.MotionEvent)
http://developer.android.com/reference/android/view/View.html#onTrackballEvent(android.view.MotionEvent)
http://developer.android.com/reference/android/view/View.html#onKeyDown(int, android.view.KeyEvent)
http://developer.android.com/guide/topics/ui/custom-components.html

Menus

● Application menus are another important part of an
application's UI

● Menus offers a reliable interface that reveals
application functions and settings

● The most common application menu is revealed by
pressing the MENU key on the device

● However, you can also add Context Menus, which
may be revealed when the user presses and holds
down on an item

Implementing Menus

● Menus are also structured using a View hierarchy, but
you don't define this structure yourself

● Instead, you define the onCreateOptionsMenu()
 or onCreateContextMenu() callback methods for your
Activity and declare the items that you want to include
in your menu

● Menus also handle their own events, so there's no
need to register event listeners on the items in your
menu

● When an item in your menu is selected,
the onOptionsItemSelected()
 or onContextItemSelected() method will be called by
the framework

http://developer.android.com/reference/android/app/Activity.html#onCreateOptionsMenu(android.view.Menu)
http://developer.android.com/reference/android/app/Activity.html#onCreateContextMenu(android.view.ContextMenu, android.view.View, android.view.ContextMenu.ContextMenuInfo)
http://developer.android.com/reference/android/app/Activity.html#onOptionsItemSelected(android.view.MenuItem)
http://developer.android.com/reference/android/app/Activity.html#onContextItemSelected(android.view.MenuItem)

Declaring Layout

● Write the XML
● Load the XML Resource
● Attributes
● Position
● Size, Padding, and Margins

Ways to Declare Layout

● Your layout is the architecture for the user interface in
an Activity

● It defines the layout structure and holds all the
elements that appear to the user

● You can declare your layout in two ways
○ Declare UI elements in XML
○ Instantiate layout elements at runtime

● The Android framework gives you the flexibility to use
either or both of these methods for declaring and
managing your application's UI

Declaring UI Elements in XML

● Android provides a straightforward XML vocabulary that
corresponds to the View classes and subclasses, such as
those for widgets and layouts

● Advantages
○ Enable you to better separate the presentation of

application from the code that controls its behavior
○ Make it easier to visualize the structure of your UI, so

it's easier to debug problems
○ You can create XML layouts for different screen

orientations, different device screen sizes, and different
languages

○ Be able to modify or adapt UI without having to modify
your source code and recompile

Instantiating Layout Elements at Runtime

● Your application can create View and ViewGroup objects
(and manipulate their properties) programmatically

● If you're interested in instantiating View objects at runtime,
refer to the ViewGroup and View class references

● View
○ TextView
○ ViewGroup

■ LinearLayout
■ TableLayout
■ TabWidget

■ RelativeLayout
■ TabHost
■ GridView
■ ListView

http://developer.android.com/reference/android/view/ViewGroup.html
http://developer.android.com/reference/android/view/View.html

Writing the XML

● Using Android's XML vocabulary, you can quickly
design UI layouts and the screen elements they
contain, in the same way you create web pages in
HTML — with a series of nested elements

● Each layout file must contain exactly one root element,
which must be a View or ViewGroup object

● You can add additional layout objects or widgets as
child elements to gradually build a View hierarchy that
defines your layout

Load the XML Resource

● When you compile your application, each XML layout file is
compiled into a View resource

● You should load the layout resource from your application code, in
your Activity.onCreate() callback implementation

● Do so by calling setContentView(), passing it the reference to your
layout resource in the form of:R.layout.layout_file_name

● For example, if your XML layout is saved as main_layout.xml, you
would load it for your Activity like so:

● public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView.(R.layout.main_layout);
}

http://developer.android.com/reference/android/view/View.html
http://developer.android.com/reference/android/app/Activity.html#onCreate(android.os.Bundle)
http://developer.android.com/reference/android/app/Activity.html#setContentView(int)

Attributes

● Every View and ViewGroup object supports their own
variety of XML attributes

● Some attributes are specific to a View object (for
example, TextView supports the textSize attribute), but
these attributes are also inherited by any View objects
that may extend this class

● Some are common to all View objects, because they
are inherited from the root View class (like
the id attribute).

Attribute ID

● Any View object may have an integer ID associated
with it, to uniquely identify the View within the tree

● When the application is compiled, this ID is referenced
as an integer, but the ID is typically assigned in the
layout XML file as a string, in the id attribute

● This is an XML attribute common to all View objects
(defined by the View class) and you will use it very
often.

http://developer.android.com/reference/android/view/View.html

New Attribute ID

The syntax for an ID, inside an XML tag is:

android:id="@+id/my_button"
● The at-symbol (@) at the beginning of the string

indicates that the XML parser should parse and
expand the rest of the ID string and identify it as
an ID resource

● The plus-symbol (+) means that this is a new
resource name that must be created and added to
our resources (in the R.java file)

IDs of Existing Resources

● There are a number of other ID resources that are offered
by the Android framework

● When referencing an Android resource ID, you do not need
the plus-symbol, but must add the android package
namespace, like so:

android:id="@android:id/empty"
● With the android package namespace in place, we're now

referencing an ID from the android.R resources class, rather
than the local resources class.

Creating and Referencing Views

1. Define a view/widget in the layout file and assign it a
unique ID:<Button android:id="@+id/my_button" ...>

2. Then create an instance of the view object and
capture it from the layout (typically in the onCreate()
 method):Button myButton = (Button) findViewById(R.
id.my_button);

http://developer.android.com/reference/android/app/Activity.html#onCreate(android.os.Bundle)

Layout Parameters

● XML layout attributes named layout_something define
layout parameters for the View that are appropriate for the
ViewGroup in which it resides

● Every ViewGroup class implements a nested class that
extends ViewGroup.LayoutParams

● This subclass contains property types that define the size
and position for each child view, as appropriate for the view
group

● The parent view group defines layout parameters for each
child view (including the child view group)

http://developer.android.com/reference/android/view/ViewGroup.LayoutParams.html

Layout Parameters

Setting Width and Height

● In general, specifying a layout width and height using
absolute units such as pixels is not recommended

● Instead, using relative measurements such as
density-independent pixel units (dp), wrap_content,
or fill_parent, is a better approach

○ Because it helps ensure that your application will
display properly across a variety of device screen
sizes

Layout Position

● The geometry of a view is that of a rectangle
● A view has a location, expressed as a pair

of left and top coordinates, and two dimensions,
expressed as a width and a height

● The unit for location and dimensions is the pixel
● It is possible to retrieve the location of a view by

invoking the methods getLeft() and getTop()
● These methods both return the location of the view

relative to its parent
● In addition, several convenience methods are offered

to avoid unnecessary computations,
namely getRight() andgetBottom().

http://developer.android.com/reference/android/view/View.html#getLeft()
http://developer.android.com/reference/android/view/View.html#getTop()
http://developer.android.com/reference/android/view/View.html#getRight()
http://developer.android.com/reference/android/view/View.html#getBottom()

View Size

● The size of a view is expressed with a width and a
height. A view actually possess two pairs of width and
height values

● The first pair is known as measured
width and measured height. These dimensions define
how big a view wants to be within its parent. The
measured dimensions can be obtained by
calling getMeasuredWidth() andgetMeasuredHeight()

● The second pair is simply known as width and height,
or sometimes drawing width and drawing height.
These dimensions define the actual size of the view
on screen, at drawing time and after layout

http://developer.android.com/reference/android/view/View.html#getMeasuredWidth()
http://developer.android.com/reference/android/view/View.html#getMeasuredHeight()

View Padding

● To measure its dimensions, a view takes into account
its padding

● The padding is expressed in pixels for the left, top,
right and bottom parts of the view

● Padding can be used to offset the content of the view
by a specific amount of pixels

● For instance, a left padding of 2 will push the view's
content by 2 pixels to the right of the left edge

● Padding can be set using the setPadding(int, int, int,
int) method and queried by callinggetPaddingLeft(),
 getPaddingTop(), getPaddingRight()
 and getPaddingBottom().

http://developer.android.com/reference/android/view/View.html#setPadding(int, int, int, int)
http://developer.android.com/reference/android/view/View.html#setPadding(int, int, int, int)
http://developer.android.com/reference/android/view/View.html#getPaddingLeft()
http://developer.android.com/reference/android/view/View.html#getPaddingTop()
http://developer.android.com/reference/android/view/View.html#getPaddingRight()
http://developer.android.com/reference/android/view/View.html#getPaddingBottom()

Constants for Setting Width and Height

● Often you will use one of these constants to set
the width and height

○ wrap_content tells your view to size itself to the
dimensions required by its content

○ fill_parent (renamed match_parent in API Level 8)
tells your view to become as big as its parent view
group will allow

Common Layouts

● LinearLayout
● TableLayout
● RelativeLayout

Linear Layout

● LinearLayout aligns all children in a single direction —
vertically or horizontally, depending on how you define
the orientation attribute

● All children are stacked one after the other, so a
vertical list will only have one child per row, no matter
how wide they are, and a horizontal list will only be
one row high (the height of the tallest child, plus
padding)

● LinearLayout also supports assigning a weight to
individual children

○ This attribute assigns an "importance" value to a
view, and allows it to expand to fill any remaining
space in the parent view

○ Default weight is zero

http://developer.android.com/reference/android/widget/LinearLayout.html
http://developer.android.com/reference/android/widget/LinearLayout.html

Weight Examples

● If there are three text boxes and two of them declare
a weight of 1, while the other is given no weight (0)

○ The third text box without weight will not grow and
will only occupy the area required by its content

○ The other two will expand equally to fill the space
remaining after all three boxes are measured.

● If there are three text boxes and two of them declared
a weight of 1 and the third box is given a weight of 2

○ The third text box is now declared "more important"
than both the others, so it gets half the total
remaining space, while the first two share the rest
equally.

LinearLayout Weight Example1

LinearLayout Weight Example2

Equal Weight Text Boxes

Unequal Weight Text Boxes

TableLayout

● TableLayout positions its children into rows and
columns

● TableLayout containers do not display border lines for
their rows, columns, or cells

● The table will have as many columns as the row with
the most cells

● A table can leave cells empty, but cells cannot span
columns, as they can in HTML

http://developer.android.com/reference/android/widget/TableLayout.html

TableRow

● TableRow objects are the child views of a
TableLayout

● Each TableRow defines a single row in the table
● Each row has zero or more cells, each of which is

defined by any kind of other View
● The cells of a row may be composed of a variety of

View objects, like ImageView or TextView objects

http://developer.android.com/reference/android/widget/TableRow.html

TableRow with ImageView & TextView

RelativeLayout
● RelativeLayout is a ViewGroup that displays

child View elements in relative positions
● The position of a View can be specified as

○ Relative to sibling elements (such as to the left-of or
below a given element) or

○ In positions relative to the RelativeLayout area (such
as aligned to the bottom, left of center)

● Elements are rendered in the order given
○ The element that you will reference (in order to

position other view objects) must be listed in the XML
file before you refer to it from the other views via its
reference ID

http://developer.android.com/reference/android/widget/RelativeLayout.html
http://developer.android.com/reference/android/view/ViewGroup.html
http://developer.android.com/reference/android/view/View.html
http://developer.android.com/reference/android/view/View.html
http://developer.android.com/reference/android/widget/RelativeLayout.html

StudentForm

References

● http://developer.android.com/guide/topics/ui/index.html
● http://developer.android.com/guide/topics/ui/declaring-

layout.html
● http://developer.android.com/guide/topics/ui/layout-objects.

html

