
Introduction to Android

Asst. Prof. Dr. Kanda Runapongsa Saikaew
Department of Computer Engineering

Khon Kaen University
http://twitter.com/krunapon

Agenda

What is Android?
Android Architecture
HelloAndroid Tutorial
Application Fundamentals

What is Android?

An open source, open platform for mobile
development
All the SDK, API, and platform source is
available
No licensing, no app review
Applications on the Android platform is
developed using the Java programming
language

Android Features

Application framework enabling reuse and replacement of
components
Dalvik virtual machine optimized for mobile devices
Integrated browser based on the open source WebKit
engine

WebKit has been used by Safari, Dashboard, Mail, and
many other OS X application

Optimized graphics powered by a custom 2D graphics
library 3D graphics based on the OpenGL ES 1.0
specification (hardware acceleration optional)
SQLite for structured data storage

SQLite is the most widely deployed SQL database
engine in the world

Android Features

Media support for common audio, video, and still image
formats (MPEG4, H.264, MP3, AAC, AMR, JPG, PNG, GIF)
GSM Telephony (hardware dependent)
Bluetooth, EDGE, 3G, and WIFI (hardware dependent)
Camera, GPS, compass, and accelerometer (hardware
dependent)
Rich development environment including a device
emulator, tools for debugging, memory and performance
profiling, and a plugin for the Eclipse IDE

Android Architecture

Applications

Android will ship a set of core applications which are written
using the Java programming language

Alarm clock
Browser
Calculator
Camera
Contacts
Email
Music
Phone
...

Application Framework

A rich and extensible set of Views that can be used to build
an application, including lists, grids, text boxes, buttons, and
even an embeddable web browser
Content Providers that enable applications to access data
from other applications (such as Contacts), or to share their
own data
A Resource Manager, providing access to non-code
resources such as localized strings, graphics, and layout
files
A Notification Manager that enables all applications to
display custom alerts in the status bar
An Activity Manager that manages the lifecycle of
applications and provide a common navigation backstack

Libraries (1/2)

Android includes a set of C/C++ libraries by various
components of the Android system

System C library - a BSD-derived implementation of the
standard C system library (libc), tuned for embedded
Linux-based devices
Media Libraries - based on PacketVideo's OpenCORE

The libraries support playback and recording of many
popular audio and video formats as well as static
image files, including MPEG4, H.264, MP3, ACC,
AMR, JPG, and PNG

Surface Manager - manages access to the display
subsystem and seamlessly composites 2D and 3D
graphic layers from multiple applications

Libraries (2/2)

LibWebCore - a modern web browser engine which powers
both the Android browser and an embeddable web view
SGL - the underlying 2D graphics engine
3D libraries - an implementation based on OpenGL ES 1.0
APIs; the libraries use either hardware 3D acceleration
(where available) or the included, highly optimized 3D
software rasterizer
FreeType - bitmap and vector font rendering
SQLite - a powerful and lightweight relational database
engine available to all applications

Android Runtime

Android includes a set of core libraries that provides most of
the functionality available in the core libraries of the Java
programming language
Every Android application runs in its own process, with its
own instance of the Dalvik virtual machine
Dalvik allows a device to run multiple VMs efficiently and
use minimal memory footprint
The Dalvik VM executes files in the Dalvik Executable (.dex)
format
The Dalvik VM relies on the Linux kernel for underlying
functionality such as threading and low-level memory
management

Agenda

What is Android?
Android Architecture
HelloAndroid Tutorial
Android Project Components

HelloAndroid Result

Steps in Developing HelloAndroid

1. Have JDK and Eclipse installed
If they haven't been installed, download JDK from http:
//www.oracle.
com/technetwork/java/javase/downloads/index.html
and Eclipse from http://eclipse.org/downloads/

2. Download and Install Android SDK
Download from http://developer.android.
com/sdk/index.html

3. Install ADT Plugin for Eclipse
4. Create Emulator

Install packages
Choose device target

5. Create and modify Android project

Install ADT Plugin for Eclipse (1/2)

1. Start Eclipse and choose menu Help > Install New
Software
2. In the Available Software dialog, click Add...
3. In the Add site dialog

In the "Name" field, enter a name for remote site
(For example, "Android plugin")
In the "Location" field, enter URL as "https://dl-
ssl.google.com/android/eclipse"
Click OK

Add Remote Site for Android Plugin

Install ADT Plugin for Eclipse (2/2)

4. In the list "Work with", choose "Android Plugin"
Select the checkbox next to "Developer Tools"
Click Next and Finish

Configuring the ADT Plugin
1. Select Window > Preferences... to open the
Preferences
panel (Mac OS X: Eclipse > Preferences).
2. Select Android from the left panel.
3. For the SDK Location in the main panel, click
Browse... and locate your downloaded SDK
directory.
4. Click Apply, then OK

Install Android Platform in Eclipse

1. In the Android SDK and AVD Manager, choose
Available Packages in the left panel.

2. Click the repository site checkbox to display the
components available for installation
3. Select at least one platform to install, and click
Install Selected

If you are not sure which platform to install, use
the latest version

Install Platforms in Eclipse

Create an AVD

1. In Eclipse, choose Window > Android SDK and AVD
Manager
2. Select Virtual Devices in the left panel
3. Click New. The Create New AVD dialog appears
4. Type the name of the AVD
5. Choose a target which is the platform
6. Click Create AVD

A Newly Created AVD

Create a New Android Project

1. From Eclipse, select File > New > Project
2. Select "Android Project" and click Next
3. Fill in the project detail with the following values:

Project name: HelloAndroid
Application name: Hello, Android
Package name: com.example.helloandroid (or your own
private namespace)
Create Activity: HelloAndroid

Click Finish

Project Description Explanation

1. Project Name: This is Eclipse Project name - the name of the
directory that will contain the project files
2. Application Name: This is the human-readable title for your
application - the name that will appear on the Android device
3. Package Name: This is the package namespace
4. Create Activity: This is the name for the class stub that will
be generated by the plugin

This will be a subclass of Android's Activity class
An Activity is simply a class that can run and do work

5. Min SDK version
This value specifies the minimum API level required by your
application

class HelloAndroid

package com.example.helloandroid;
import android.app.Activity;
import android.os.Bundle;
public class HelloAndroid extends Activity {
 /** Called when the activity is first created */
 @Override
 // It is where you should perform all initialization and UI
setup
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}

Construct the UI

package com.example.helloandroid;
import android.app.Activity;
import android.os.Bundle;
import android.widget.TextView;
public class HelloAndroid extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 TextView tv = new TextView(this);
 tv.setText("Hello, Android");
 setContentView(R.layout.main);
 }
}

Problems that May Occur
On Mac OS X and Windows: These problems may occur

Solution:
1) Delete file debug.keystore in directory .android which is usually in
home directory
2) Set time and date to be in English format
3) Delete and create the project

If this does not work, you should generate debug.keystore by yourself
using this command
keytool -genkey -keypass android -keystore debug.keystore -alias
androiddebugkey -storepass android -validity 100000 -dname "CN=Android
Debug,O=Android,C=US"

View
View

TextView

Button EditText

TextView

In this change, you create a TextView with the
class constructor, which accepts an Android
Context instance as its parameter
A Context is a handle to the system

It provides services like resolving resources,
obtaining access to databases and
preferences, and so on

The Activity class inherits from Context, and
because your HelloAndroid class is a subclass of
Activity, it is also a Context

Activity
Context

Activity

Upgrading the UI to an XML Layout

A "programmatic" UI layout is created by writing source
code directly into the application

Small changes in layout can result in big source-code
headaches
It is easy to forget to properly connect Views together,
which can result in errors in your layout and wasted time
debugging your code

Android provides an alternate UI construction model: XML-
based layout files

These XML layout files belong in the res/layout/ directory
of the project
The "res" is short for "resources" which also include
assets such as images, sounds, and localized strings

Sample res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.
com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello"
 />
</LinearLayout>

XML Layout Elements & Attributes
Attribute Meaning

xmlns:android This is an XML namespace declaration that tells
the Android tools that you are going to refer to
common attributes defined in the namespace

android:layout_width This attribute defines how much of the available
width on the screen this View should consume. In
this case, it's the only View so you want it to take
up the entire screen, which is what a value of
"fill_parent" means.

android:layout_height This is just like android:layout_width, except that it
refers to available screen height.

android:text This sets the text that the TextView should
display. Its value is defined in res/values/strings.
xml which helps in localization of your application

Modify res/layout/main.xml

<TextView xmlns:android="http://schemas.android.
com/apk/res/android"
 android:id="@+id/textview"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:text="@string/hello"/>

Modify res/values/strings.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="hello">Hello, Android! I am Kanda
Runapongsa Saikaew</string>
 <string name="app_name">HelloAndroid</string>
</resources>

Modify HelloAndroid class

import android.app.Activity;
import android.os.Bundle;
import android.widget.TextView;
public class HelloAndroid extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 /* The resource is identified as R.layout.main, which is actually
a compiled object representation of the layout defined
in /res/layout/main.xml */
 setContentView(R.layout.main);
 }
}

The Result of Modification

Debug Your Project
The Android Plugin for Eclipse also has excellent integration with the Eclipse debugger. To
demonstrate this, introduce a bug into your code. Change your HelloAndroid source code
to look like this:

package com.example.helloandroid;

import android.app.Activity;
import android.os.Bundle;

public class HelloAndroid extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState); /* This change simply introduces a
NullPointerException into your code */
 Object o = null;
 o.toString();
 setContentView(R.layout.main);
 }
}

Application with Error

Find Out More About the Error

To find out more about the error, set a breakpoint in your
source code on the line Object o = null; (double-click on the
marker bar next to the source code line)
Then select Run > Debug History > Hello, Android from
the menu to enter debug mode
Your app will restart in the emulator, but this time it will
suspend when it reaches the breakpoint you set
You can then step through the code in Eclipse's Debug
Perspective, just as you would for any other application.

Agenda

What is Android?
Android Architecture
HelloAndroid Tutorial
Application Fundamentals

Application Fundamentals

Application Components
Activity and Tasks
Process and Threads

Android Application

Android applications are written in the Java
programming language
The compiled Java code — along with any data and
resource files required by the application — is bundled
by the aapt tool into an Android package, an archive
file marked by an .apk suffix
The *.apk file is the vehicle for distributing the
application and installing it on mobile devices
It's the file users download to their devices. All the
code in a single .apk file is considered to be
one application.

http://developer.android.com/guide/developing/tools/aapt.html

Application Components

Android applications don't have a single entry point for
everything in the application (no main() function, for
example)T

They have essential components that the system
can instantiate and run as needed

There are four types of components
Activities
Services
Broadcast receivers
Content providers

Activities

An activity presents a visual user interface for one
focused endeavor the user can undertake
Examples:

A list of menu items users can choose from
A list of photographs along with their captions
A text messaging application may contain a set of activities

Shows a list of contacts to send messages
Write the message to the chosen contact
Review old messages or change settings
Each activity is independent of the others

Each one is implemented as a subclass of the Activity base class.

http://developer.android.com/reference/android/app/Activity.html

Services

A service doesn't have a visual user interface, but rather runs in
the background for an indefinite period of time
Examples:

 A service might play background music as the user attends to
other matters
A service fetch data over the network or calculate something
and provide the result to activities that need it

Each service extends the Service base class
Services run in the main thread of the application process. So that
they won't block other components or the user interface, they often
spawn another thread for time-consuming tasks

http://developer.android.com/reference/android/app/Service.html

Broadcast Receivers
A broadcast receiver is a component that does nothing but receive and
react to broadcast announcements
Examples:

Many broadcasts originate in system. Announcements that
Timezone has changed
Battery is low
A picture has been taken
The user changed a language preference

Applications can also initiate broadcasts
Examples: to let other applications know that some data has been
downloaded to the device and is available for them to use

Broadcast Receivers in an Application

An application can have any number of broadcast receivers
to respond to any announcements it considers important
All receivers extend the BroadcastReceiver base class
Broadcast receivers do not display a user interface
Broadcast receivers may start an activity in response to the
information they receive, or they may use
the NotificationManager to alert the user
Notifications can get the user's attention in various ways —
flashing the backlight, vibrating the device, playing a sound,
and so on

http://developer.android.com/reference/android/content/BroadcastReceiver.html
http://developer.android.com/reference/android/app/NotificationManager.html

Content Providers
A content provider makes a specific set of the application's
data available to other applications

The data can be stored in the file system, in an SQLite
database, or in any other manner that makes sense

Content provider extends the ContentProvider base class to
implement a standard set of methods that enable other
applications to retrieve and store data of the type it controls
However, applications do not call these methods directly.
Rather they use a ContentResolver object

A ContentResolver can talk to any content provider. It
cooperates with the provider to manage any interprocess
communication that's involved

http://developer.android.com/reference/android/content/ContentProvider.html
http://developer.android.com/reference/android/content/ContentResolver.html

Classes for Main Components

Activities
android.app.Activity which extends from android.content.
Context

Services
android.app.Service which extends from android.
content.Context

Broadcast Receivers
android.content.BroadcastReceiver

 Content Providers
android.content.ContentResolver

Activating Components: Intents

Activities, services, and broadcast receivers are activated
by asynchronous messages called intents

Content providers are activated when they're targeted by
a request from a ContentResolver

An intent is an Intent object that holds the content of the
message

For activities and services, it names the action being
requested and specifies the URI of the data to act on
For broadcast receivers, it names the action being
announced

http://developer.android.com/reference/android/content/Intent.html

Activating an Activity

An activity is launched (or given something new to do) by
passing an Intent object to Context.startActivity()or Activity.
startActivityForResult()

The result is returned in an Intent object that's passed to
the calling activity's onActivityResult() method.

The responding activity can look at the initial intent that
caused it to be launched by calling its getIntent() method
 Android calls the activity's onNewIntent() method to pass it
any subsequent intents.

http://developer.android.com/reference/android/content/Context.html#startActivity(android.content.Intent)
http://developer.android.com/reference/android/app/Activity.html#startActivityForResult(android.content.Intent, int)
http://developer.android.com/reference/android/app/Activity.html#startActivityForResult(android.content.Intent, int)
http://developer.android.com/reference/android/app/Activity.html#onActivityResult(int, int, android.content.Intent)
http://developer.android.com/reference/android/app/Activity.html#getIntent()
http://developer.android.com/reference/android/app/Activity.html#onNewIntent(android.content.Intent)

Activating a Service

A service is started (or new instructions are given to
an ongoing service) by passing an Intent object
to Context.startService()
Android calls the service's onStart() method and
passes it the Intent object
Similarly, an intent can be passed to Context.
bindService() to establish an ongoing connection
between the calling component and a target service

http://developer.android.com/reference/android/content/Context.html#startService(android.content.Intent)
http://developer.android.com/reference/android/app/Service.html#onStart(android.content.Intent, int)
http://developer.android.com/reference/android/content/Context.html#bindService(android.content.Intent, android.content.ServiceConnection, int)
http://developer.android.com/reference/android/content/Context.html#bindService(android.content.Intent, android.content.ServiceConnection, int)

Activating a Broadcast

An application can initiate a broadcast by passing an
Intent object to methods like Context.sendBroadcast()

 Context.sendOrderedBroadcast()
 Context.sendStickyBroadcast()
 in any of their variations

Android delivers the intent to all interested broadcast
receivers by calling their onReceive() methods

http://developer.android.com/reference/android/content/BroadcastReceiver.html#onReceive(android.content.Context, android.content.Intent)

Shutting Down Components

No need to explicitly shut down a content provider and a
broadcast receiver

A content provider is active only while it's responding to
a request from a ContentResolver
A broadcast receiver is active only while it's responding
to a broadcast message

Activities, on the other hand, provide the user interface.
They're in a long-running conversation with the user and
may remain active, even when idle, as long as the
conversation continues
Similarly, services may also remain running for a long time

Shutting Down Activities & Services

An activity can be shut down by calling its finish()
 method

One activity can shut down another activity (one it
started with startActivityForResult()) by
calling finishActivity()

A service can be stopped by calling its stopSelf()
 method, or by calling Context.stopService()
Components might also be shut down by the system
when they are no longer being used or when Android
must reclaim memory for more active components

http://developer.android.com/reference/android/app/Activity.html#finish()
http://developer.android.com/reference/android/app/Activity.html#finishActivity(int)
http://developer.android.com/reference/android/app/Service.html#stopSelf()
http://developer.android.com/reference/android/content/Context.html#stopService(android.content.Intent)

The maninest File

Before Android can start an application component, it
must learn that the component exists
Therefore, applications declare their components in a
manifest file that's bundled into the Android package,
the .apk file that also holds the application's code,
files, and resources
The manifest is a structured XML file and is always
named AndroidManifest.xml for all applications

Declaring the application's components
Naming any libraries the application needs to be
linked against (besides the default Android library)
Identifying any permissions the application expects
to be granted

Example of Manifest File

<?xml version="1.0" encoding="utf-8"?>
<manifest . . . >
 <application . . . >
 <activity android:name="com.example.project.
FreneticActivity"
 android:icon="@drawable/small_pic.png"
 android:label="@string/freneticLabel"
 . . . >
 </activity>
 . . .
 </application>
</manifest>

Declaring Components in Manifest File

Use <activity> elements for declaring activities
Use <service> elements for declaring services
Use <receiver> elements for broadcast receivers,
Use <provider> elements for content providers
Activities, services, and content providers that are not
declared in the manifest are not visible to the system
and are consequently never run
However, broadcast receivers can either be declared
in the manifest, or they can be created dynamically in
code

Intent Filters

An Intent object can explicitly name a target
component

If it does, Android finds that component (based on
the declarations in the manifest file) and activates it

But if a target is not explicitly named
Android must locate the best component to respond
to the intent
It does so by comparing the Intent object to
the intent filters of potential targets
A component's intent filters inform Android of the
kinds of intents the component is able to handle

Sample Intent Filters
<?xml version="1.0" encoding="utf-8"?>
<manifest . . . >
 <application . . . >
 <activity android:name="com.example.project.FreneticActivity" ...
 <intent-filter . . . >
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 <intent-filter . . . >
 <action android:name="com.example.project.BOUNCE" />
 <data android:mimeType="image/jpeg" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
 </activity>....
 </application>
</manifest>

Explanation about Sample Filters

The first filter in the example — the combination of the
action "android.intent.action.MAIN" and the category
"android.intent.category.LAUNCHER" — is a common
one

It marks the activity as one that should be
represented in the application launcher
The activity is the entry point for the application, the
initial one users would see when they choose the
application in the launcher.

The second filter declares an action that the activity
can perform on a particular type of data.

Intent Filters and Components

A component can have any number of intent filters,
each one declaring a different set of capabilities
If a component doesn't have any filters, it can be
activated only by intents that explicitly name the
component as the target
All components except a broadcast receiver have
filters set up in the manifest

For a broadcast receiver that's created and
registered in code, the intent filter is instantiated
directly as an IntentFilter object

http://developer.android.com/reference/android/content/IntentFilter.html

Activities and Tasks

A task is what the user experiences as an "application"
It's a group of related activities, arranged in a stack
The root activity is the one that began the task

Typically, it's an activity the user selected in the
application launcher

The activity at the top of the stack is one that's currently
running — the one that is the focus for user actions
When one activity starts another, the new activity is pushed
on the stack; it becomes the running activity The previous
activity remains in the stack
When the user presses the BACK key, the current activity is
popped from the stack, and the previous one resumes as
the running activity

A Task as a Unit

All the activities in a task move together as a unit
The entire task (the entire activity stack) can be
brought to the foreground or sent to the background
Suppose, for instance, that the current task has four
activities in its stack — three under the current activity
The user presses the HOME key, goes to the
application launcher, and selects a new application
(actually, a new task)
The current task goes into the background and the
root activity for the new task is displayed

Processes and Threads

When the first of an application's components needs
to be run, Android starts a Linux process for it with a
single thread of execution
By default, all components of the application run in
that process and thread
A programmer can arrange for components to run in
other processes
A programmer can spawn additional threads for any
process

Processes

The process where a component runs is controlled by
the manifest file
The component elements — <activity>,
<service>, <receiver>, and <provider>
Each element have a process attribute that can
specify a process where that component should run

These attributes can be set so that each component
runs in its own process, or so that some components
share a process while others do not

The <application> element also has
a process attribute, for setting a default value that
applies to all components

Shutting Down a Process

Android may decide to shut down a process at some
point, when memory is low and required by other
processes that are more immediately serving the user
Application components running in the process are
consequently destroyed
 A process is restarted for those components when
there's again work for them to do
When deciding which processes to terminate, Android
weighs their relative importance to the user

For example, it more readily shuts down a process with
activities that are no longer visible on screen than a
process with visible activities.

Threads

Even though you may confine your application to a
single process, there will likely be times when you will
need to spawn a thread to do some background work
Since the user interface must always be quick to
respond to user actions, the thread that hosts an
activity should not also host time-consuming
operations like network downloads
Anything that may not be completed quickly should be
assigned to a different thread.

Classes for Threads

Threads are created in code using standard
Java Thread objects
Android provides a number of convenience
classes for managing threads

Looper for running a message loop within a
thread
Handler for processing messages
HandlerThread for setting up a thread with a
message loop

http://developer.android.com/reference/java/lang/Thread.html
http://developer.android.com/reference/android/os/Looper.html
http://developer.android.com/reference/android/os/Handler.html
http://developer.android.com/reference/android/os/HandlerThread.html

Components Lifecycles

Application components have a lifecycle
A beginning when Android instantiates them to
respond to intents through to an end when the
instances are destroyed

In between, they may sometimes be active or inactive,
or, in the case of activities, visible to the user or
invisible
There are the lifecycles of activities, services, and
broadcast receivers

Activity Lifecycle

An activity has essentially three states:

It is active or running when it is in the foreground of the screen (at
the top of the activity stack for the current task). This is the activity
that is the focus for the user's actions.

It is paused if it has lost focus but is still visible to the user. A
paused activity is completely alive, but can be killed by the system
in extreme low memory situations.

It is stopped if it is completely obscured by another activity. It still
retains all state and member information. However, it is no longer
visible to the user so its window is hidden and it will often be killed
by the system when memory is needed elsewhere

Transitions between Activity States

Activity transitions from state to state, it is notified of the
change by calls to the following protected methods:
void onCreate(Bundle savedInstanceState)
void onStart()
void onRestart()
void onResume()
void onPause()
void onStop()
void onDestroy()

Lifetimes of Activity Lifecycle

The entire lifetime of an activity happens between the first call
to onCreate() through to a single final call to onDestroy()
The visible lifetime of an activity happens between a call
to onStart() until a corresponding call to onStop(). During this time,
the user can see the activity on-screen, though it may not be in the
foreground and interacting with the user

The onStart() and onStop()methods can be called multiple
times, as the activity alternates between being visible and
hidden to the user

The foreground lifetime of an activity happens between a call
to onResume() until a corresponding call toonPause(). During this
time, the activity is in front of all other activities on screen and is
interacting with the user

http://developer.android.com/reference/android/app/Activity.html#onCreate(android.os.Bundle)
http://developer.android.com/reference/android/app/Activity.html#onDestroy()
http://developer.android.com/reference/android/app/Activity.html#onStart()
http://developer.android.com/reference/android/app/Activity.html#onStop()
http://developer.android.com/reference/android/app/Activity.html#onResume()
http://developer.android.com/reference/android/app/Activity.html#onPause()

Service Lifecycle

A service can be used in two ways:

It can be started and allowed to run until someone stops it or it stops itself.
In this mode, it's started by calling Context.startService() and stopped by
calling Context.stopService(). It can stop itself by calling Service.stopSelf()
 or Service.stopSelfResult()

It can be operated programmatically using an interface that it defines and
exports. Clients establish a connection to the Service object and use that
connection to call into the service. The connection is established by
calling Context.bindService(), and is closed by calling Context.unbindService()

Multiple clients can bind to the same service. If the service has not
already been launched, bindService() can optionally launch it.

http://developer.android.com/reference/android/content/Context.html#startService(android.content.Intent)
http://developer.android.com/reference/android/content/Context.html#stopService(android.content.Intent)
http://developer.android.com/reference/android/app/Service.html#stopSelf()
http://developer.android.com/reference/android/app/Service.html#stopSelfResult(int)
http://developer.android.com/reference/android/content/Context.html#bindService(android.content.Intent, android.content.ServiceConnection, int)
http://developer.android.com/reference/android/content/Context.html#unbindService(android.content.ServiceConnection)

Service Lifecycle Methods

A service has lifecycle methods that you can implement to
monitor changes in its state
But they are fewer than the activity methods — only three —
and they are public, not protected:
void onCreate()
void onStart(Intent intent)
void onDestroy()

Lifetimes of Service Lifecycle

The entire lifetime of a service happens between the
time onCreate() is called and the time onDestroy() returns.
Like an activity, a service does its initial setup in onCreate(),
and releases all remaining resources in onDestroy()
The active lifetime of a service begins with a call
to onStart(). This method is handed the Intent object that
was passed to startService()

The music service would open the Intent to discover
which music to play, and begin the playback
There's no equivalent callback for when the service
stops — no onStop() method.

http://developer.android.com/reference/android/app/Service.html#onCreate()
http://developer.android.com/reference/android/app/Service.html#onDestroy()
http://developer.android.com/reference/android/app/Service.html#onStart(android.content.Intent, int)

Broadcast Receiver Lifecycle

A broadcast receiver has single callback method:
void onReceive(Context curContext,
Intent broadcastMsg)

When a broadcast message arrives for the receiver,
Android calls its onReceive() method and passes it the
Intent object containing the message
The broadcast receiver is considered to be active only
while it is executing this method. When onReceive()
 returns, it is inactive.

http://developer.android.com/reference/android/content/BroadcastReceiver.html#onReceive(android.content.Context, android.content.Intent)

Processes and Lifecycles
To determine which processes to keep and which to kill, Android places
each process into an "importance hierarchy" based on the components
running in it and the state of those components
There are five levels in the hierarchy. The following list presents them in
order of importance
1. A foreground process is one that is required for what the user is

currently doing.
2. A visible process is one that doesn't have any foreground

components, but still can affect what the user sees on screen
3. A service process is one that is running a service that has been

started with the startService() method and that does not fall into either
of the two higher categories.

4. A background process is one holding an activity that's not currently
visible to the user (the Activity object'sonStop() method has been
called).

5. An empty process is one that doesn't hold any active application
components. The only reason to keep such a process around is as a
cache to improve startup time the next time a component needs to run
in it

http://developer.android.com/reference/android/content/Context.html#startService(android.content.Intent)
http://developer.android.com/reference/android/app/Activity.html#onStop()

References

http://developer.android.com/guide/basics/what-is-android.html
http://developer.android.com/guide/topics/fundamentals.html

