
Lab 4: Intents, Linkify, and
Google Maps

Dr. Kanda Runapongsa Saikaew
Computer Engineering Department

http://twitter.com/krunapon

Agenda

● Introducing Intents
● Staring new Activities using implicit and

explicit Intents
● Using linkify

Introducing Intents

● Intents are used as a message-passing mechanism that
works both within your application and between applications

● Intents can be used to
○ Declare your intention that an Activity or Service be

started to perform an action, usually with (or an) a
particular piece of data

○ Broadcast that an event (or action) has occurred
○ Explicitly start a particular Service or Activity

● You can use Intents to support interaction among any of the
application components installed on an Android device

○ This turns your device from a platform containing a
collection of independent components into a single
interconnected system

Using Intents to Start New Activities

● Explicitly
○ Specifying the class to load

● Implicitly
○ Requesting that an action be performed on

a piece of data
○ The action need not be performed by an

Activity within the calling application

Using Intents to Broadcast

● Intents can also be used to broadcast messages across the
system

○ Any application can register Broadcast Receivers to
listen for, and react to, these broadcast Intents

○ This lets you create event-driven applications based on
internal, system, or third-party-application events

● Android broadcasts Intents to announce system events, like
changes in Internet connection status or battery
charge levels

● The native Android applications, such as the SMS manager,
simply register components that listen for specific broadcast
Intents such as incoming phone call

Using Intents to Propagate Actions

● Using Intents to propagate actions -- even within
the same application -- is a fundamental Android
design principle

● It encourages the decoupling of components, to
allow the seamless replacement of application
elements

● It also provides the basis of a simple model for
extending an application's functionality

Using Intents to Launch Activities

● To open an Activity, call startActivity, passing in an Intent as
shown in the following snippet:

Intent myIntent = new Intent(MyActivity.
this, MyOtherActivity.class);startActivity(myIntent);

● After startActivity is called, the new Activity (in this example
MyOtherActivity) will be created and become visible and
active, moving to the top of the Activity stack

● Calling finish on the new Activity, or pressing the hardware
back button, will close it and remove it from the stack

Implicit Intents and Late Runtime Binding

● An implicit Intent is a mechanism that lets anonymous
application components service action requests

● You can ask the system to launch an Activity that can
perform a given action without knowing which application, or
Activity, will do so

● When constructing a new implicit Intent to use with
startActivity, you nominate an action to perform and,
optionally, supply the URI of the data to perform that action
on

● You can also send additional data to the target Activity by
adding extras to the Intent

Implicitly Starting an Activity Sample

if (somethingWeird && itDontLookGood) {
 Intent intent = new Intent(Intent.ACTION_DIAL,
 Uri.parse("tel:555-2368"));
 startActivity(intent);
}

● Android resolves this Intent and starts an Activity that
provides the dial action on a telephone number -- in this
case the dialer Activity

● In circumstances where multiple Activities are capable of
performing a given action, the user is presented with a
choice

Sub-Activity

● You can start an Activity as a sub-Activity that's inherently
connected to its parent

● A sub-Activity triggers an event handler within its parent
Activity when it closes

● Sub-Activities are perfect for situations in which one Activity
is providing data input (such as a user's selecting an item
from a list) for another

● Sub-Activities are really just Activities opened in a different
way. As such they must be registered in the application-
manifest

○ In fact any manifest-registered Activity can be opened as
a sub-Activity

Starting an Activity for a Result

● Explicit
private static final int SHOW_SUBACTIVITY = 1;

Intent intent = new Intent(this, MyOtherActivity.class);
startActivityForResult(intent, SHOW_SUBACTIVITY);

● Implicit
private static final int PICK_CONTACT_SUBACTIVITY = 2;
Uri uri = Uri.parse("content://contacts/people");
Intent intent = new Intent(Intent.ACTION_PICK, uri);
startActivityForResult(intent,
PICK_CONTACT_SUBACTIVITY);

Returning Results

● When your sub-Activity is ready to return, call setResult
before finish to return a result to the calling Activity

● The setResult method takes two parameters: the result
code and the result itself, represented as an Intent

● The result code is the 'result' of running the sub-Activity
○ Generally either Activity.RESULT_OK or Activity.

RESULT_CANCELED
○ In some circumstances you'll want to use your own

response codes to handle application specific choices;
setResult supports any integer value

● The Intent returned as a result often includes a URI to a
piece of content (such as the selected contact, phone
number, or media file)

Returning Results Sample Code (1/2)

Button okButton = (Button) findViewById(R.id.ok_button);
okButton.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 Uri data = Uri.parse("content://horses/"
+ select_horse_id);
 Intent result = new Intent(null,data);
 result.putExtra(IS_INPUT_CORRECT, inputCorrect);
 result.putExtra(SELECTED_PISTOL, selectedPistol);
 setResult(RESULT_OK, result);
 finish();
 }
});

Returning Results Sample Code (2/2)

Button cancelButton = (Button) findViewById(R.id.
cancel_button);
cancelButton.setOnClickListener(new View.OnClickListener() {
 setResult(RESULT_CANCELED, null);
 finish();
 }
});

IntentActionDemo

● After writing a single activity, there comes a need to
transition to another activity to perform another
task either with or without information from the first
activity.

● Android platform allows transition by means of
Intent Interface.

● In this example there are two activities -
IntentActionDemo.java and IntentA.java that both
extend the super class Activity

● Do not forget to declare any new activity in the
AndroidManifest.xml with permission.

IntentActionDemo Output

IntentActionDemo Implementation

● Simple intent example;
Note that optional step 2 was not used in our demo.
Step 1: Intent i = new Intent(context,
NameOfClassToTransitionTo.class)

Step 2:(Optional)Intents can take various forms that
make it even carry data in key/name pairs ie i.
putExtra("key1", "My first Info")
i.putExtra("key2", "My second Info")

Step 3: startActivity(i)
● Please see the code at http://marakana.

com/forums/android/examples/65.html

IntentActionDemo.java
public class IntentActionDemo extends Activity implements OnClickListener {
@Override
public void onCreate(Bundle savedInstanceState) {
 ...
Button button = (Button) findViewById(R.id.intentButton);
button.setOnClickListener(this);
}
@Override
public void onClick(View src) {
Intent i = new Intent(this, IntentA.class);
startActivity(i);
}
}

IntentA.java
public class IntentA extends Activity implements
OnClickListener{
@Override
public void onClick(View src) {
Intent i = new Intent(this, IntentActionDemo.class);
startActivity(i);
}
public void onCreate(Bundle savedInstanceState) {

Button button = (Button) findViewById(R.id.ButtonIntentA);
button.setOnClickListener(this);
}
}

AndroidManifest.xml
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.
com/apk/res/android"
package="com.marakana.com"
android:versionCode="1"
android:versionName="1.0">
<application android:icon="@drawable/icon" android:label="
@string/app_name">
<activity android:name=".IntentActionDemo"
android:label="@string/app_name">
...
</activity>
<activity android:name="IntentA"></activity>
</application>
<uses-sdk android:minSdkVersion="9" />
</manifest>

KKULogin: Submit (1)

KKULogin:Go to Web Page (2)

KKULogin: Web Browser (3)

Introducing Linkify

● Linkify is a helper class that automatically creates hyperlinks
within Text View (and Text View-derived) classes through
RegEx pattern matching

● Text that matches a specified RegEx pattern will be
converted into a clickable hyperlink that implicitly fires
startActivity (new Inntet(Inte.ACTION_VIEW, uri)), using the
matched text as the target URI

● You can specify any string pattern you want to turn into
links; for convenience; the Linkify class provides presets for
common content types (like phone numbers and email/web
addresses)

The Native Linkify Link Types

● The static Linkify.addLinks method accepts the View to
linkify, and a bitmask of one or more of the default content
types supported and supplied by the Linkify class:

○ WEB_URLS
○ EMAIL_ADDRESSES
○ PHONE_NUMBERS
○ ALL

Using Linkify Samples

● Using Linkify in code
 TextView textView = (TextView) findViewById(R.id.
myTextView);
 Linkify.addLinks(textView, Linkify.WEB_URL|Linkify.
EMAIL_ADDRESSES);

● Using Linkify in XML
<TextView
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:text="@string/linkify_me"
 android:autoLink="phone|email"
/>

KKU Login:Help (4)

KKU Login: Click Web Link (5)

KKU Login: Web Link Open (6)

KKU Login: Click Phone Link (7)

KKU Login: Phone to be Dialled (8)

Intents: Starting a New Activity

● Dial a number
Intent intent = new Intent(Intent.ACTION_DIAL, Uri.parse("tel:
043362160"));
startActivity(intent);

● Launch a website
Intent intent = new Intent(Intent.ACTION_VIEW, Uri.parse("http:
//gear.kku.ac.th"));
startActivity(intent);

Defining the Arrays of Values

● The values that appear at AutoComplete components are
defined in strings.xml

Intents Starting Activity (1)

Intents Starting Activity (2)

Intents Starting Activity (3)

Intents Starting Activity (4)

Displaying Google Maps
● Be default, the Google Maps displays the map of the United States when it

is first loaded.
● However, you can also set the Google Maps to display a particular

location. In this case, you can use the animateTo() method of
the MapController class

mapView = (MapView) findViewById(R.id.mapView);mc = mapView.
getController(); double lat = Double.parseDouble("16.466"); double lng = Double.
parseDouble("102.478"); p = new GeoPoint((int) (lat * 1E6), (int) (lng * 1E6)); mc.
animateTo(p);mc.setZoom(17); mapView.invalidate();

http://www.google.com/search?hl=en&q=allinurl%3ADouble+java.sun.com&btnI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3ADouble+java.sun.com&btnI=I%27m%20Feeling%20Lucky

Adding a Marker (1/2)
To add a marker to the map, you first need to define a class that
extends the Overlay class:class MapOverlay extends com.google.
android.maps.Overlay { @Override public boolean draw(Canvas canvas,
MapView mapView, boolean shadow, long when) { super.draw(canvas,
mapView, shadow); //---translate the GeoPoint to screen pixels--- Point
screenPts = new Point(); mapView.getProjection().toPixels(p,
screenPts); //---add the marker--- Bitmap bmp = BitmapFactory.
decodeResource(getResources(), R.drawable.pushpin); canvas.
drawBitmap(bmp, screenPts.x, screenPts.y-50, null); return true; } }

http://www.google.com/search?hl=en&q=allinurl%3ACanvas+java.sun.com&btnI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3APoint+java.sun.com&btnI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3APoint+java.sun.com&btnI=I%27m%20Feeling%20Lucky

Adding a Marker (2/2)

● Create an instance of the MapOverlap class and add it to
the list of overlays available on the MapView object:

● @Override public void onCreate(Bundle savedInstanceState) { //... mc.animateTo(p);
mc.setZoom(17); //---Add a location marker--- MapOverlay mapOverlay = new
MapOverlay(); List<Overlay> listOfOverlays = mapView.getOverlays(); listOfOverlays.
clear(); listOfOverlays.add(mapOverlay); mapView.invalidate(); }

Getting the Location that was touched

class MapOverlay extends com.google.android.maps.Overlay ... {@Override public boolean onTouchEvent(MotionEvent event,
MapView mapView) { //---when user lifts his finger--- if (event.getAction() == 1) { GeoPoint p = mapView.
getProjection().fromPixels((int) event.getX(), (int) event.getY()); Toast.makeText(getBaseContext(), p.
getLatitudeE6() / 1E6 + "," + p.getLongitudeE6() /1E6 , Toast.LENGTH_SHORT).show(); } return false; } }

GoogleMaps with a Marker
We we press the mouse at the marker corner, the program will
display the location

Getting Variables from One Screen to Another

● Sending information by using method putExtras
int array[] = {1,2,3};
Intent i = new Intent(A.this, B.class);
i.putExtras("numbers", array);
i.putString("key", "value");
startActivity(i);

● Getting information by using method getExtras
Bundle extras = getIntent().getExtras();
int[] arrayB = extras.getInt("numbers");
String value = extras.getString("key");
// Alternatively, you can also do
// String value = getIntent().getStringExtras("key");

Google Maps with Intents (1/4)

● The program initializes values at EditText components
● The user just clicks button "Go"

Google Maps with Intents (2/4)
● The program then goes to another screen with map view

and the marker at the specified location
● The user then clicks button "Back"

Google Maps with Intents (3/4)
● Now the user changes the latitude and the longitude and

clicks button "Go"

Google Maps with Intents (4/4)

References

● http://marakana.com/forums/android/examples/65.html
● http://www.slideshare.net/CodeAndroid/android-intent-

intent-filter-broadcast-receivers
● http://mobiforge.com/developing/story/using-google-maps-

android
● http://stackoverflow.com/questions/3848148/sending-

information-with-intent-putextra

