Na	nme:ID:Page.1/6
	188 331 Operating Systems 2010 2 nd Semester Midterm Examination 24 December 2010 8:30 – 11:30
1. 2. 3.	NO books, NO sheets, NO calculators are allowed. There are 30 questions, 124 marks total, attempts ALL questions. Answer in the space provided ONLY. Do NOT cheat. Any attempts to cheat will result in dismissal from class with an "F" grade.
1.	What is an operating system ?(2 marks)
2.	Why does an operating system exist ? (2 marks)
3.	Is it possible to build a computing system without an operating system? Why? (3 marks)
4.	Describe main components of an operating system. What are the purposes of those components ? (5 marks)
5.	What are differences among batch processing, multiprogramming, and time-sharing (3 marks)
6.	What are system calls? Why do we need them? (3 marks)

7. What are differences between monolithic kernels and microkernels? Which one is better? Why? (3 marks)

8. There are many different kinds of *interrupts*, what are they? Explain (5 marks)

Na	me:	ID:	Page.2/6
9.	What are differences between real mode and protection	rected mode in the x86 architecture? (3	3 marks)
10.	What is a boot loader? Why most x86 boot loade second-stage)? (3 marks)	ers must be divided into many stages (i	.e., first-stage and
11.	What are <i>processes</i> ? What are differences among	g processes, programs, jobs, tasks? (3	marks)
12.	Describe process states and transitions (5 marks)		
13.	Suppose the process <i>P</i> executes the following coox x = fork(); if (x == 0) { y = fork(); if (y != 0) { z = fork (); } } Draw the process tree showing parent-child relation process. (5 marks)		y and z in each
14.	What are threads? What are differences between	threads and processes ? (3 marks)	
15.	In which conditions that <i>threads</i> would be better	than <i>processes</i> ? Why? (3 marks)	

Name:	ID:	Page.3/6
16. In which conditions that <i>processes</i> would be	better than threads? Why?(3 marks)	
17. What are <i>fibers</i> ? What are differences between	een threads and fibers ?(3 marks)	
18. In which conditions that <i>fibers</i> are better than	n threads? Why? (3 marks)	
19. In which conditions that <i>threads</i> are better th	an fibers? Why? (3 marks)	
20. What are kernel threads and the user threads	?? (3 marks)	
21. Between kernel thread and user thread, which	ch one is faster? Why? (5 marks)	
22. In which conditions that the <i>M-1 thread mod</i> (5 marks)	el would be better than any other thread models	? Why ?
23. Describe short-term, long-term, and medium-	-term schedulers (3 marks)	
24. Why CPU schedulers should be <i>short-term</i> ?	(3 marks)	

26. Write a simple program to print a character A, B, and C concurrently. (10 marks)												
27. Describ	oe differences b	etween non-pree	<i>mptive</i> aı	nd <i>preempt</i>	<i>ive</i> sched	uling (3	3 marl	ks)				
28. From the	he following tal	ble,										
28. From the	he following tal Process		me	Burst	_							
28. From the			me	Burst 3	_							
28. From the	Process A B	Arrival Ti 0 1	me	3 2	- -							
28. From the	Process A B C	Arrival Ti 0 1 2	me	3 2 4	_							
	Process A B C D	Arrival Ti 0 1 2 3		3 2 4 3								
	Process A B C D	Arrival Ti 0 1 2		3 2 4 3								
	Process A B C D	Arrival Ti 0 1 2 3		3 2 4 3								
	Process A B C D	Arrival Ti 0 1 2 3		3 2 4 3 rks)	Waiting 7	Time						
	Process A B C D etermine waitin	Arrival Ti 0 1 2 3		3 2 4 3 rks)	Waiting 7							
	Process A B C D etermine waitin	Arrival Ti 0 1 2 3		3 2 4 3 rks)	Waiting	Time						
	Process A B C D etermine waitin Process A	Arrival Ti 0 1 2 3		3 2 4 3 rks)	Waiting	Γime						

25. How can $Intel \mathbb{R}$ $Hyper-Threading^{TM}$ technology create illusion images of multiprocessor? From operating system's points of view, what are benefits gained from the technology? (3 marks)

Name:_

Page.4/6

_ID:___

ame:												_ID:_					Pa	ige.5/
28.2 D	etermine wai	ting ti	ime v	ısing l	RR v	vith 1	time	quan	tum	= 3 ((5 m	arks))					
	Process								•	Wait	ing [Гіте						
	A																	
	В																	
	C																	
	D																	
28.3 D	etermine <i>turn</i>	ıarour —	nd tir	ne, us	sing 1	non- _]	preei	nptiv	e SJ	F (5	marl	ks)		<u> </u>	<u> </u>			
	Process	$\overline{}$							Tı	ırnar	ounc	d Tin	ne					
	A																	
	В																	
	С																	
	D																	
20.45								C.T.	F (5		,							
28.4 D	etermine <i>turn</i>	ıarour ——	nd tir	ne, us	sing p	preer	nptiv	ve SJ	F (5	mark	(s)							
	Process								Tı	ırnar	ounc	d Tin	ne					
	A																	
	В																	
	С																	
	D																	

complexity.(3 r	marks)	
	O(1) scheduler	CFS
Data Structure		
Complexity		

29. Compare Linux's O(1) scheduler and the Completely Fair Scheduler (CFS) in term of data structures, and

_ID:__

Name:__

_Page.6/6

30. What is a *preemptible kernel*? What are advantages and disadvantages of preemptible kernels compared to non-preemptible kernels.? (3 marks)