178330 Operating Systems
 Midterm Examination
 4 January 2007 21.00-24.00

Instructions:

1. Books are NOT ALLOWED.
2. A single sheet of A4 note is ALLOWED.
3. There are 11 questions, 90 marks total, attempts ALL questions.
4. Do NOT cheat.
5. Why does an operating system exist ? What is the primary purpose of an operating system ? (5 marks)
6. Why is CPU scheduler a short-time scheduler ? (5 marks)
7. What are differences between monolithic kernel and microkernel? Which one is better? Why? (5 marks)
8. What are system call, user space, and kernel space ? What are relationships among them ? (5 marks)
9. Describe states of a process, and how can a process transit from one state to another? (5 marks)
10. What are differences among a process, a thread, and a fiber ? (5 marks)
11. How can a uniprocessor system with Intel® Hyper-Threading Technology provides an illusion of dual processors? How can an operating system take advantages of such technology ? (10 marks)
12. In the process state cycle, there are 4 possible transitions to perform CPU scheduling. What are those transitions? Why some of them are preemptive, while the others are non-preemptive? (10 marks)
13. From the following processes:

Process	Burst time	Arrival time	Priority
P0	5	0	5
P1	7	1	4
P2	3	2	3
P3	9	3	2
P4	1	5	1

9.1 Find average waiting time of non-preemptive SJF, RR with time quantum $=2$, and nonpreemptive priority scheduling (a higher number implies a higher priority). (10 marks)
9.2 Find average turnaround time of FCFS and preemptive SJF scheduling (10 marks)
10. Describe how the Linux scheduler works and clearly show why such scheduler has algorithm complexity of $\mathrm{O}(1)$. (10 marks)
11. If you are going to design an operating system for industrial robots, what is your choice of the following, and why ? (10 marks)

1. Monolithic or Microkernel?
2. Time sharing or Real-time ?
3. Preemptive or Non-preemptive?
4. Thread model of M:1, $1: 1, \mathrm{M}: \mathrm{N}$?
5. Preemptible kernel or Non-preemptible kernel?
