188 331 Operating Systems

Final Examination

27 February 2010 13:00 - 16:00

Instructions:

- 1. NO books, sheets, calculators are allowed.
- 2. There are 20 questions, 104 marks total, attempts ALL questions.
- 3. Carefully choose your answers, write them in the space provided ONLY.
- 4. Do NOT cheat. Any attempts to cheat will result in dismissal from class with an "F" grade.
- 1. Describe the following terms:(10 marks)
 - 1.1 Race condition
 - 1.2 Starvation
 - 1.3 Spinlocks
 - 1.4 Deadlocks
 - 1.5 Semaphores
 - 1.6 Mutexes
 - 1.7 Degree of Multiprogramming
 - 1.8 Monitors
 - 1.9 Mutual Exclusions
 - 1.10 Thrashing
- 2. Task schedulers can either be preemtive or non-preemtive. What are differences between them ? (3 marks)
- 3. Between the preemtive task scheduler and the non-preemtive task scheduler, which one is more suitable for time-sharing systems ? Why ? (3 marks)

4. From the following table, determine waiting time, and turnaround time of each process

Processes	Arrival Time	Burst
А	2	5
В	0	4
С	1	2
D	3	3

4.1 Using FIFO (3 marks)

0	5	10	15	20	25

Process	Waiting Time	Turnaround Time
А		
В		
С		
D		

4.2 Using non-preemtive SJF (3 marks)

Process	Waiting Time	Turnaround Time
А		
В		
С		
D		

4.3 Using preemtive SJF (3 marks)

0	:	5]	10]	15			20		25

Process	Waiting Time	Turnaround Time
А		
В		
С		
D		

4.4 Using RR with time quantum = 2 (3 marks)

0		5	5		1	10			15			20		25

Process	Waiting Time	Turnaround Time
А		
В		
С		
D		

5. Given $\alpha = 0.9$ and $\tau_0 = 10$, predict bursts during $\tau_1 - \tau_5$ from the actual bursts of 5, 2, 2, 7, 4. (5 marks)

$$au_1 =$$
 $au_2 =$
 $au_3 =$

 $\tau_4 =$ $\tau_5 =$

- 6. What are advantages and disadantages of a *preemptible kernel*, compared to *non-preemtible kernel*? (3 marks)
- 7. Find the safe state of the followings using the *Banker's algorithm* (5 marks)

$$A = \begin{bmatrix} 2 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \qquad N = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 2 & 0 \\ 2 & 2 & 0 & 0 \\ 2 & 0 & 0 & 1 \end{bmatrix} \qquad E = \begin{bmatrix} 6 & 4 & 4 & 2 \end{bmatrix}$$

Row Selected	Р	E-P
-		

8. How can we prevent deadlock to occur in the dining philosophers problem? (5 marks)

9. What are primary purposes of *paging*? (3 marks)

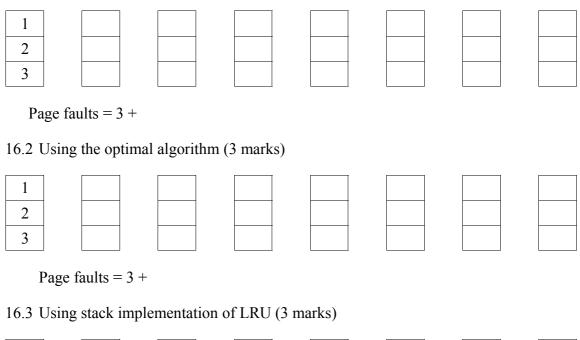
10. Describe the following address binding techniques (3 marks): 10.1 Compile-time

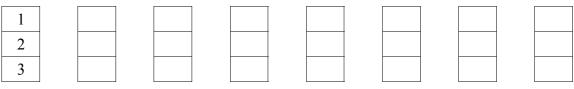
10.2 Load-time

10.3 Execution-time

- 11. Paging in IA-32 has been design to be multilevel of 10+10+12 bits, why? (5 marks)
- 12. Given a system equipped with an Intel Core[™] i7-920XM processor running at 2 GHz, and a 4-GB DDR3-1333 running at the memory clock of 166.667 MHz, determine EAT of the system if TLB lookup requires 14 cycles, memory access requires 7 cycles and the hit ratio is 95%. (5 marks)

13. From the following requests, show page allocation using the buddy system with 32 pages (3 marks) Process A created size = 3 pages


Process	s B cre	eated size	ze =	6 pa	ages	5																		
Process	s C cre	eated size	ze =	9 p	ages	5	1	T	I	[T	1	T	1	T	I	ľ	T	I	r	I	T		
Process	s B de	stroyed					1	T	1	1	T	T	T	1	T	I	I	T	I	r	I	T		
Process	s A de	stroyed					 -																	
Process	s D cr	eated si	ze =	12	page	es	 -																	


14. What are differences between *swapping* and *demand paging*? What are advantages of the demand paging ? (3 marks)

15. Suppose a system can access 4-kB pages in memory 200 times faster than those pages on disk, determine how many times does the demand paging system slow the system down if page faults rate is 0.5% and all overhead (page fault and restart) can be ignored. (5 marks)

16. Given a system with 3 frames occupied by page 1, 2, and 3, respectively. How many page faults occurred from the page request of 2, 3, 4, 3, 1, 2, 5

16.1 Using FIFO (3 marks)

Page faults = 3 +

- 17. What are purposes of the followings: (3 marks) 17.1 Files
 - 17.2 Directories
 - 17.3 File systems
- 18. Give a short description, advantages, and disadvantages for contiguous allocation, linked allocation, and indexed allocation. (5 marks)

Allocation	Description	Advantages	Disadvantages
Contiguous			
Linked			
Indexed			

19. A disk, with a geometry of 4 heads, 63 sectors, 1024 cylinders (0 - 1023), receives the reading sequence as the followings:

837, 519, 148, 494, 706, 526, 457, 402, 501, 20

Determine the number of cylinders the disk head must be moved to complete the reading if current head position is at cylinder 681.

19.1 Using FCFS (3 marks)

Schedule:

Number of cylinders:

19.2 Using SSTF (3 marks)

Schedule:

Number of cylinders:

19.3 Using C-SCAN (3 marks)

Schedule:

Number of cylinders:

20. Why do computer engineering/science students need to study operating system courses ? (5 marks)