7 — Deadlocks

7 — Deadlocks

* What are deadlocks ?
* How to deal with deadlocks

What we've learned so far ...

+ We want to utilize resources efficiently
¢ Multiprogramming, time-sharing, etc.

¢ At some scale, processes are units of work that can
run in parallel.

¢ Then, in finer grains, threads.
¢ Two or more processes (or threads, fibers) may
need to access the same resource at the same
time.
* To be consistent, it may need to execute atomically.
¢ Semaphores, Mutexes, ...

(cont'd.)

¢ But, further more, each process may need to
access several resources (exclusively) to
accomplish a task.
¢ That introduces another problem, e.g.,
« P and P, may access both R and &,

» P accesses R exclusively
» P, accesses R, exclusively
+ P, must wait P, to release R to accomplish its task
» P, must wait P, to release R, to accomplish its task

« Both P, and P, cannot go anywhere — deadlock !

What is it, formally ?

¢ Aset of processes is deadlock if each process in
the set is waiting for an event that only another
process in the set can cause.

Conditions for Deadlock

* Defined by E. G. Coffman in 1971

* The following four conditions must hold:
¢ Mutual Exclusion
* Require to access a resource exclusively
¢ Hold and Wait
» Hold resources and wait for accessing other resources
¢ No Preemption
¢ The process must release the resource so that the
others can access it.
¢ Circular Wait

¢ Two or more processes form a circular chain where one
process is waiting for the resource that the next process
in the chain holds.

How to deal with deadlocks ?

* First question, do we really need to prevent, avoid,
or recover deadlocks ?
¢ Mathematicians say “Yes, we must”.

¢ Engineers say “That depends on how often and how
serious”.

¢ If deadlock << system crashes, hardware failures, bugs,
then we should focus on solving those problems, and
just ignore the deadlock.

¢ So, the first algorithm: the Ostrich algorithm —
close your eyes, and pretend that there is no
(deadlock) problem at all.

¢ Interestingly, most UNIX systems, and MS Windows
just ignore deadlocks.

(cont'd.)

¢ And to deal with deadlocks, we may use following
strategies:

¢ Deadlock Prevention
¢ Deadlock Avoidance
¢ Deadlock Detection and Recovery

Deadlock Prevention

* The strategy is to break the deadlock conditions.
¢ Mutual Exclusion

¢ Virtually impossible to deny mutual exclusion to
prevent deadlocks, some resources are not sharable.

¢ Spooling may help.
* Hold and Wait
¢ Request all resources before execution.
* Low utilization
* Release all resources it holds, and then request all.
¢ No Preemption
e ltis difficult to make some resources preemptible.

(cont'd.)

¢ Circular Wait

¢ Total ordering resources, and let processes to request
resources in increasing order.

¢ To request a resource, the process must release all the
lower-order resources.

Deadlock Avoidance

* The system must be able to decide whether
granting a resource is safe or not and make
allocation only when it is safe.

* Safe state
* Banker's algorithm

Safe State

+ A state is safe if the system can allocate resources
to each process in some order and still avoid a
deadlock.

¢ Formally, a system is in a safe state iff there exists
a safe sequence.

o Asequence of processes <P,P,.,P> is a safe

sequence for the current allocation state if, for
each Pl,, the resources that Pl, can still request can

be satisfied by the current available resource
pluses resources held by all PJ_ with j < i.

(cont'd.)

e Example:
Total resource = 12
Process Max needs Need at 1

P, 10 5
P 4 2
P 9 2

2

o Atz the systemisin a safe state

« The sequence < Pl, PO, P2> satisfies the conditions, so
{5, 2, 2} can be granted.

(cont'd.)

. P1 requests all resources to finish its job, thus
1,= 15, 4.2} and only one resource available.
o P finishes the job, and releases all holding resources {

= {5,0, 2}, and 5 resources are available.
« Next, P0 requests t= {10, 0, 2}, then release

1= 10,0, 2}.
« Finally, Pz, request t = {0, 0, 9}, then release
1= {0, 0, 0}.

¢ A safe system may go unsafe
. e.g.,Iif (= {5, 2, 3}.

Banker's Algorithm

+ An algorithm to determine whether there is a safe
state.

* Named after a real-world situation:

¢ Customers have a credit limit. Bank cannot allow
everyone to maximize their credits at once.

* Banker has to queue customers in some sequences to
satisfy all of them.

¢ Customer = Process, Cash = Resource, Banker = OS

(cont'd)

Let
m = no. of classes of resources
n = no. of processes

A [n X m] represents resources allocated by each
process

¢ One row per process

¢ One column per class of resource
N [n X m] represents resources needed
E[1 x m] represents no. of resources of each class
P[1 X m] sums columns of 4.

(cont'd.)

1

.Decrease N and increase Ap

o Cem ,, according to

the request. Compute P.

ce

. Select p’ such that all elements of N, are less than

or equal to E - P. If no such p' exists, it is unsafe.
Terminate algorithm, restore N, 4, P.

. Subtract 4, from P. Strike p' from further

consideration.

.Repeat step 2 — 3 until all rows in N have been

processed.

.If unsafe state does not exist, then it is safe and

the request at step 1 can be committed.

(cont'd.)

Example: 1 printer, 1 disk, 2 processes
Initially,

0 0
0 0

11

A=
1 1

N=

}E:U 1] P=[0 0]

Suppose x request for a printer:

[1oo] o 1] . _
A= o) N=l] I}E_U 1] P=[1 0]
E-P=[0 1]

Since N_ < E - P, continue

(cont'd.)

 Subtract 4_from P

A=

1 o]l _[o 1] ._ _
o O}N_L I}E_U 1] P=[0 0]

E-P=[1 1]

Since Ny < FE — P, process y can continue.

* So, itis safe to allow x to allocates a printer.

(cont'd.)
¢ Next, if y request for a disk

1 0
01

0 1

A=
[10

.

E-P=[0 0]
No N,<E-P. So, itis unsafe, and the request
must be blocked.

(cont'd.)
¢ Example: is this safe ?
1 1 0 01 0
A=|0 0 ol N=|2 o 1| E=[3 2 1] P=[3 1
2 0 0 1 11
Let's see,
Row Selected P E-P
[3 1 0] [0 1 1]
1 [2 0 0] [1 2 1]
3 [0 0 0] [3 2 1]
2 [0 0 0] [3 2 1]

So, itis safe, and a safe sequenceis <1, 3,2 >.

(cont'd.)

¢ Example: is this also safe ?

1 1 0 010
A=|l0 0 1| N=|2 o0 1| E=[3 2 1] P=[3 1 1]
2 00 1 1 1
Row Selected P E-P
[3 1 1] [0 1 0]
1 [2 0 1] [1 2 0]
??

So, it is unsafe.

Deadlock Detection and Recovery

¢ Let deadlocks occur, and try to detect them.
¢ And, if it is possible, recover them.

¢ If the resource-allocation graph contains at least
one cycle, then deadlocks exist.

¢ So, we can detect deadlocks by traverse through the
graph to find whether any cycle exists.

Resource-Allocation Graphs

* In 1972, R. C. Holt showed how to represent
resource allocation model using directed graphs.

R is held by P P requests for R

N N
P P

(cont'd.)

¢ This can be a deadlock:

(cont'd.)

* The order of execution may or may not cause the
deadlock, e.g., 3 processes access 2 of 3
resources, with round-robin, they might be
scheduled to:

(cont'd.)

(cont'd.)

5 -
Deadlock!

(cont'd.)
e If they are scheduled differently, e.g.,

(cont'd.)

(cont'd.)

oo

(NoDeadlock :D)

An example

¢ 4 holds R and wants S.

¢ B holds nothing but wants T.
¢ C holds nothing but wants S.
* D holds U and wants S and 7.
¢ F holds T and wants V.

* F holds W and wants S.

¢ G holds V and wants U.

(cont'd.)

When to detect deadlocks ?

* Every time a resource request is made.
¢ Quite expensive in term of CPU time
¢ Every certain period of time

* When CPU utilization has dropped below some
threshold.

* \When deadlocks has occurred, there will be few
runnable processes, and CPU will often be idle.

Deadlock Recovery

¢ Preemption
¢ Temporarily take resource away from current process
and assign to another.
¢ Manual intervention may be required.
¢ Difficult or even impossible to preempt
¢ Rollback

¢ Back to the known consistent state — checkpoint
¢ Imply implementation of checkpoint

* Memory image

* Resource states

* Incremental checkpoint

(cont'd.)

¢ Destroy

¢ Simplest way to recover,
¢ Kill a process or processes to break the cycle
¢ Randomly kill the processes in the cycle

¢ Carefully chosen not-in-the-cycle processes that hold
resources required by processes in the cycle.

