5 — Task Scheduling

5 — Task Scheduling

¢ Basic scheduling concepts
¢ Scheduling algorithms
» Selecting an algorithm for a particular system

188 331 Operating Systems

Basic Concepts

¢ Task scheduling is a fundamental function of every
operating system.

¢ A process is executed until it must wait for I/O
completion.

¢ This means CPU is idle and an operating system
should give the CPU to another process that want to
execute the code.

* The success of task scheduling depends on
property of processes.

¢ e.g, alternate between CPU bursts and I/O bursts.

188 331 Operating Systems

CPU-I/O Burst Cycle

eed] e %CPU Burst

Wait for disk 110 | b 1,0 Burst

. i » CPU Burst
in port_a

Wait for port I/O > |/O Burst

out port b > CPU Burst

- -

Wait for port 1/0 } 1/0 Burst

188 331 Operating Systems

(cont'd.)

Frequency

e — -
Duration

Generally, CPU burst distribution is exponential or
hyper-exponential.

¢ Many short CPU bursts, few long CPU bursts

188 331 Operating Systems

Task Schedulers

¢ Carried out when a computing resources is idle.

* Because there are many short bursts, it should be
a short-term scheduler.

¢ Also, the algorithm should be optimized for those
short bursts.

* But, before that, we need to know one more
concept — 'When' the task-scheduling decisions
may take place ?

188 331 Operating Systems

(cont'd.)

(2>

Terminated
Interrupt

Admitted

(Running
(3
1/0 or event /O or event
completion Scheduler dis wait
patch >\
I
Waiting
188 331 Operating Systems
|
(cont'd.)

¢ For 1 and 4, no choice, the scheduler must select
a process for execution.

e This is called non-preemptive.

¢ A process keeps the CPU until terminating or switching
to the waiting, e.g. I/O.

¢ No special hardware needed.
¢ MS Windows 3.1, Older versions of Mac OS
¢ For 2 and 3, the scheduler may switch from one
process to another. This is called preemptive.
¢ Requires special hardware, e.g., timer interrupt.
¢ May introduce deadlocks, inconsistencies, ...
¢ What about processing of system calls in the kermnel ?

188 331 Operating Systems

(cont'd.)

+ To avoid any inconsistencies, most UNIX waits for
a system call to complete, or for an I/O block to
take place, before doing a context switch.
¢ Kernel will not preempt the process while kernel data

structure is in inconsistent state.
¢ Safe, but bad for real-time computing.

¢ Another problem — an interrupt can occur at any
time, and the kernel must service immediately.
¢ Interrupt service routine must not be used
simultaneously by several processes.
¢ A simple solution is to disable the interrupt when enter
the service routine, and re-enable when exit.

* This can be slow.
188 331 Operating Systems

Dispatchers

* A component to give control to the selected
process.

¢ This involves:
¢ Switching context
¢ Switching to user mode

¢ Jumping to the proper location in the user program to
restart the program.

¢ Must be very fast
¢« Remember ? context switch is totally wasteful.

¢ The time it takes to stop one process and start
another is known as the dispatch latency.

188 331 Operating Systems 10

Putting things together,

A
3 SYS XXXX User Space
Kernel Space

T . Syscalls

! K1
Interrupt!‘ Int. Vectors | 0x80 ‘

L T

ISRs Syscall Routines | | PCB | PCB PCB

Scheduler

Context Switch

—)
Ready Queue j]:l -------------------------- Dispatcher

188 331 Operating Systems 11

Scheduling Criteria

« Different CPU-scheduling algorithms have different
properties. Many criteria have been suggested for
comparing algorithms:
¢ CPU Utilization — keep the CPU as busy as possible.

In a real system, it should range from 40% to 90%.

¢ Throughput — the number of processes completed per
time unit.

* Turnaround time — total time spent to complete a
process.

¢ Waiting time — total waiting time a process spends.

¢ Response time — for interactive system, it is the
amount of time it takes to start responding for a
request or an event.

188 331 Operating Systems 12

(cont'd.)

¢ Generally, we want to ..
¢ Maximize CPU utilization,throughput
¢ Minimize turnaround time, waiting time, response time

* Most of the cases, we optimize the average
measures. But, it is not all the cases, e.g.,

* We might want to minimize the maximum response
time for some system, e.g., soft/hard real-time.

¢ For interactive system, some analysts suggest that
minimizing the variance of response time is more
important than minimizing average response time.

¢ A system with more predictable response time may be
desirable than a system that is faster but highly
variable.

188 331 Operating Systems 13

Scheduling Algorithms

¢ First-Come, First-Served

¢ Shortest-Job-First

¢ Priority

¢ Round Robin

+ Multilevel Queue

¢ Multilevel Feedback Queue

188 331 Operating Systems 14

First-Come First-Served

¢ The simplest, by far

* The first process that requests the CPU first is
allocated the CPU first.

¢ Simply implemented with a FIFO queue
¢ The average waiting time is often quite long, e.g.,

Process Arrive. Burst
PO 0 24
P1 2 3

P2 3 3

188 331 Operating Systems 15

(cont'd.)

24

1
o MR

PO P1 P2

PO arrives at TO, no wait.

P1 arrives at T2, waits until T24

P2 arrives at T3, waits until T27

Average waiting time:
(0—0)+(24-2)+(27-3)

=15.33
3

188 331 Operating Systems 16

(cont'd)

* One more example:

PO 0 3

P1 2 3

P2 3 24
3 3 24
L 1

P

PO P1 P2
¢ Average waiting time = 1.33

188 331 Operating Systems 17

(cont'd.)

* Convoy Effect — all other processes wait for the one
big process to get off.

* FCFS is non-preemptive.

¢ A process keeps the CPU until it releases either by
terminating or 1/0.

¢ Not suitable for time-sharing system.

188 331 Operating Systems 18

Shortest-Job First

¢ Shortest CPU burst is chosen first
¢ If two processes have the same length of CPU burst,

use FCFS.
Process Arrive Burst
PO 0 6
P1 1 8
P2 2 7
P3 3 3
188 331 Operating Systems 19
(cont'd.)
6 3 7 8
PO P3 P2 P1
PO P1 P2 P3 If P4 {burst = 1) is here ?

* At T6, there are 3 processes to be scheduled. So,
P3 is chosen.

* AtT9, 2 processes left, P2 is chosen.
¢ Finally, at T16, P1.
¢ Average waiting time:

(0-0)+(9—2)+(6—3)+(16—1)

7 =6.25

188 331 Operating Systems 20

(cont'd.)

» Optimal, give the minimum average waiting time
* Need to know length of the next CPU burst.
¢ Used frequently in long-term scheduling.
¢ Users specify the length of the CPU burst.
¢ Cannot be implemented in short-term scheduling

¢ There is no way to know the length of the next CPU
burst accurately, but it can be predictable.
¢ Generally, the next CPU burst is predicted as an
exponential average of the measured lengths of
previous CPU bursts.

188 331 Operating Systems 21

(cont'd.)

o Let t be the length of the nth CPU burst, then the
predicted value, T is

T Fat +(l-a7

where 0<a <1

¢ This defines an exponential average.
ol is the most recent actual/accurate information.

» 7 is the history.

* a is the weight.

188 331 Operating Systems 22
(cont'd.)
seg.,a=%andz =10
Burst 6 4 6 4 13 13 13
Predicted 8 6 6 5 9 11 12
4

—

188 331 Operating Systems 23

(cont'd.)

¢ SJF can be either preemptive or non-preemptive.

¢ A newly arrived process may preempt the currently
running process if the new one has a shorter burst.

Process Arrive Burst
PO 0 8
P1 1 4
P2 2 9
P3 3 &

188 331 Operating Systems 24

(cont'd.)

¢ Non-preemptive
8

T T I |
"9
1L
Average waiting time:
(0-0)+(8-1)+(17-2)+(12-3) _
4
188 331 Operating Systems 25

(cont'd.)

¢ Preemptive SJF is sometimes called shortesi-
remaining-time-first.
1 4 5 7 9

Tt —t

PO P1 P2 P3
Average waiting time:
((0-0)+9)+(1-1)+(17-2)+(5-3)
4
* By the way, why is it exponential ?
o Try toexpand r

=6.5

v ?)

188 331 Operating Systems 26

Priority Scheduling

* A priority is associated with each process, and the
CPU is allocated to the process with the highest
priority.
¢ SJF is a special case of priority-scheduling algorithm.

¢ Priorities are generally some fixed range of
numbers.
¢* eg.,0-7,0-4095
¢ There is no general agreement about this.

¢ Some systems use low number to represent low
priority, the other use it for high priority.

188 331 Operating Systems 27

(cont'd.)

* A' Process Arrive Burst Priority
PO 0 8 4
P1 1 4 3
P2 2 9 2
P3 3 & 1

8 5 9 4

PO P3 P2 P1

T
o
T
T
N
T
w

188 331 Operating Systems 28

(cont'd.)

* Priority can be preemptive or non-preemptive.

¢ Preemptive priority scheduler will preempt the CPU if
the priority of the newly arrived process is higher than
the priority of the currently running process.

¢ The major problem of priority scheduling is
indefinite blocking or starvation.

¢ Lower-priority processes may have to wait indefinitely.

¢ Rumor: when MIT shut down IBM 7094 in 1973, they
found a low-priority process submitted in 1967 and had
not yet been run.

¢ Aging is a technique to solve this problem.

¢ Increase priority of processes that wait in the system for
along time.

188 331 Operating Systems 29

Round-Robin

¢ Specially-designed for time-sharing systems.
* FCFS + preemption to switch between processes.
¢ The ready queue is treated as a circular queue.

¢ That's why each queue has the head and tail

* CPU is allocated for each process for a time up to
1 time quantum of time slice.
¢ Time quantum is generally from 10 to 100 msec.

¢ A process may have a burst less than 1 time quantum,
and will release CPU voluntarily.

¢ Like FCFS, the average waiting time of RR is often
quite long.

188 331 Operating Systems 30

(cont'd.)

e Time quantum =4

Process Arrive. Burst
PO 0 7
P1 1 9
P2 2 15
Y 4 .3, 4 4 4 3
F 1 o I
- P1 P2 . P1 | P2 P1 P2 P2
PO P1 P2

Average waiting time = 11.33

188 331 Operating Systems 31

(cont'd.)

¢ Imply waiting time for each process < (n—-1) x g,
where n is the number of running processes, and ¢
is the time quantum

¢ In RR, the effect of context switching must also be
considered.

¢ It switches contexts frequently.
¢ Time quantum >> context-switching time.
* Turnaround time depends on the time quantum.

¢ Increasing the time quantum does not necessary
decrease the average turnaround time.

188 331 Operating Systems 32

(cont'd)

+ Exercise: find average turnaround time
¢ Time quantum =2, 3,4,5,6

Process Arrive Burst
PO 0 6
P1 1 3
P2 2 1
P3 3 7

188 331 Operating Systems 33

Multilevel Queue

¢ For situation in which processes can be classified
into different groups, e.g.,

Highest
A
I:} Interactive processes
>{ Interactive editing processes
\
Lowest I:} Student processes >
Priority

188 331 Operating Systems 34

3 |

(cont'd.)

¢ Different scheduling/queue can be used for
different group of processes.

¢ Each process is assigned permanently to one
queue.

* There must be scheduling among these queues.

¢ Generally, a fixed-priority preemptive scheduling.
¢ Or, alternatively, time slice among the queues.

188 331 Operating Systems 35

Multilevel Feedback Queue

* Allow processes to move between queues.

¢ Separate processes with different CPU-burst
characteristics, e.g., if a process uses too much CPU
time, move to lower-priority queue, and vice versa.
¢ Akind of aging.

Queue 1 4|—:1 Quantum = 16 I_l—’
Queue 2 4|—:(FCFS —

188 331 Operating Systems 36

(cont'd.)

¢ A scheduler executes all processes in queue 0.
¢ If a process in queue 0 does not finish its job in 8 time
units, it moves to queue 1.
* Queue 1 will be executed only if queue 0 is empty.

¢ If a process in queue 1 does not finish its job in 16 time
units, it moves to queue 2.

* Queue 2 will be executed only if queue 0 and 1 are
empty.
¢ Processes of CPU bursts < 8 time units can finish
their job quickly, and go off to its next I/0.

* Processes of CPU bursts < (8 + 16) time units can
also finish their job quickly.

o Longer rocesses are sunken to queue 2.

188 331 Operdfing Systems 37

(cont'd.)

¢ Multilevel gueue is the most general CPU-
scheduling algorithm.
¢ It can be configured to match any system design.

« It also requires some means of selecting values for all
parameters to define the best scheduler.
* Number of queues
* Scheduling algorithm for each queue
¢ Method to promote to higher-priority queue
¢ Method to demote to lower-priority queue

¢ Method to determine which queue a process will enter
when it needs service.

s etc.
¢ Thus, it is also the most complex.

188 331 Operating Systems 38

Algorithm Evaluation

o First, what criteria are we considered ?
¢ CPU utilization
* Response time
¢ Throughput
* etc. etc. etc.
¢ Next, what values do we focus ?
* Average
¢ Max
¢ Min
* etc. etc. etc.

188 331 Operating Systems 39

(cont'd.)

* Methodologies — What model do we use to
evaluate ?

¢ Deterministic

¢ Queuing

e Simulation

¢ Implementation

188 331 Operating Systems 40

Deterministic Models

¢ Akind of analytical evaluation.

* Take a predefined workload, then define the
performance of each algorithm for that workload.

¢ |t's what we did so far.
* Deterministic models

¢ Simple and fast

¢ Exact values for a particular input

¢ Good to describe scheduling algorithm

¢ |Its answers apply to only those cases.
¢ Too specific to be useful.

188 331 Operating Systems 41

Queuing Models

+ Model the system into services and queues
¢ Determine the arrival rates and service rates
e Use queuing-network analysis for evaluation

¢ CPU/ready queue
¢ 1/O / device queue
e etc. etc.

e Little's theorem: let n be the avg. queue length, W
be the avg. waiting time, and 1 be the avg. arrival
rate. Thus,

n=AxW

188 331 Operating Systems 42

(cont'd.)

e Little's theory can be used to determine one of the
three variables if we know the other two, e.g.,
¢ Avg. arrival rate = 7 processes/sec
¢ Avg. queue length = 14 processes
¢ Then, avg. waiting time = 14/7 = 2 sec.
¢ The Little's theorem shows that relationships
among the three variables are independent from
any statistical distributions.
¢ e.g., regardless of arrival behaviors of processes, how
processes are enqueued.
¢ This greatly simplifies queuing analysis, but, what if we
want to know more that just these three ?

188 331 Operating Systems 43

(cont'd.)

* A more complex queuing analyses can be done by
employing the gueuing theory.

— Ready queue —»CPU}—
I - I

—» /O queue f—> I/O —
I -

A—> yz
.
Queue f

188 331 Operating Systems 44

(cont'd.)

* The queuing theory can be used to analyze
scheduling algorithms, but
¢ |tis difficult to work with mathematics of complicated
algorithms.

¢ The arrival and service distributions are often defined
in unrealistic ways.

¢ Still, assumptions and/or approximations have to be
made to simplify the analysis.

e Accuracy ?

188 331 Operating Systems 45

Simulations
* Program the model

+ Feed a large number of workloads

* Random data
¢ Uniform, Exponential, Poisson distribution ?
¢ Collected actual data

 Collect the results
¢ Statistically determine the results

¢ Quite acceptable accuracy if it is done properly.
e Expensive

¢ Program development
¢ Time to simulate

¢ Storage to maintain feeds and results
188 331 Operating Systems

Implementation

¢ Still, the simulation is of limited accuracy.

¢ The most accurate way to evaluate the system
performance.

* Very expensive

188 331 Operating Systems

Solaris 2

» 4-class priority scheduling

¢ Real time — response within a bounded period of time.

¢ System — kernel processes, e.g., paging daemon
¢ Time sharing — default
¢ Interactive

46

47

* Each of these 4 classes includes a set of priorities.
The scheduler converts the class-specific priorities

into global priorities, and select to run the threads

with the highest priority until

¢ It blocks

¢ |ts time slice expired

* Itis preempted by a higher-priority thread

188 331 Operating Systems

48

(cont'd.)
* Multiple threads have the same priority — RR.

Global Priority Real time LWPs

Highest
System O Kernel services
@
Interactive O Interactive
and) and
Time sharing | time-sharing LWPs
Lowest y
188 331 Operating Systems 49
MS Windows 2000/XP/...

* Priority-based preemptive scheduling algorithm.

¢ Ensure that the highest priority threads will always
run.
* The dispatcher handles scheduling.
* 32-level priority scheme, divided into
¢ Real-time class (16 — 31): soft real-time.
¢ Variable class (1 — 15): priority can be changed.
¢ Memory management runs at priority 0.
« Dispatcher traverses the set of queues from the

highest to the lowest until it finds a thread that is
ready to run.

188 331 Operating Systems 50

(cont'd.)

¢ If there is no ready thread, the idle thread is
executed.
¢ In Win32 API there are 6 priority classes
¢ REALTIME PRIORITY CLASS
e HIGH PRIORITY CLASS
o ABOVE NORMAL PRIORITY CLASS
* NORMAL PRIORITY CLASS
o BELOW NORMAL PRIORITY CLASS
e IDLE PRIORITY CLASS

188 331 Operating Systems 51

(cont'd.)

¢ Each class has a relative priority:
« TIME CRITICAL
o HIGHEST
« ABOVE NORMAL
* NORMAL
e BELOW NORMAL
o LOWEST
» IDLE
¢ Priority class + relative priority can be converted to
the 32-level priority.

188 331 Operating Systems 52

(cont'd.)

¢ To give a good response time for interactive
threads

* When a thread is interrupted, and is in the variable-
priority class, its priority is lowered.

¢ When a thread is released from wait, its priority is
boosted.

¢ The amount of boosts depends on what the thread was
waiting for, e.g., keyboard I/O gets a large boost while
disk /O gets a moderate one.

* When a process becomes a foreground process, the
quantum is increased typically by the factor of 3.

¢ Three times longer to run before preemption.

188 331 Operating Systems 53

Linux

* Priority-based scheduling

* Two levels of priority schemes
* Nice: -20 to +19
* Nice means .. nice :)
¢ User real-time priority: 0 to 99
¢ Based on POSIX.1b
¢ Configurable/controllable via system calls.

e From include/linux/sched.h
#define MAX USER RT PRIO 160

#define MAX_RT PRIO MAX_USER RT PRIO
#define MAX_PRIO (MAX_RT PRIO + 40)

188 331 Operating Systems 54

Linux — Priority

* The two schemes are combined to a single priority
scheme for scheduling in kernel space.
* 0to MAX RT PRIO — 1 to map user real-time priority
¢ MAX RT PRIO to MAX PRIO — 1 to map nice.

0 99I -20 19 I
User Real-Time Priority _
0 MAX_RT_PRIO MAX_PRIO-1

¢ Linux combines these in effective prio()

188 331 Operating Systems 55

Linux — Scheduling Policies
e From include/linux/sched.h

#define SCHED_NORMAL 0
#define SCHED_FIFO 1
#define SCHED RR 2
#define SCHED_BATCH 3

¢ Normal processes uses SCHED NORMAL

¢ (Soft) Real-time processes explicitly specify
SCHED_FIFO or SCHED_ RR

¢ Batch processes are treated as SCHED NORMAL that
never sleep, i.e, no I/O wait.

188 331 Operating Systems 56

(cont'd.)

e The SCHED RR and SCHED FIFO will always be
scheduled before SCHED NORMAL and
SCHED_BATCH.

¢ The SCHED RR uses round robin.
e The SCHED FIFO uses FIFO.

¢ Basically, it is identical to SCHED_RR without time
slices.

¢ Round robin is used to resolved processes with
the same priority.

188 331 Operating Systems 57

Linux — More about priority

¢ The effective prio() is also a wrapper to
dynamically adjust scheduling priority based on
the policies and process behaviors.

¢ If a process spends more time in 1/O wait, then it
might be I/O bound.

¢ 1/O-bound cycle is usually alternations of a long /O
wait followed by a short CPU burst, e.g., to process the
1/0 data.

¢ Linux will increase scheduling priority of such
processes

¢ |If a process spends more time on CPU, then it is
CPU bound. Linux will decrease its priority.

188 331 Operating Systems 58

(cont'd.)

¢ This means I/O-bound processes would get CPU
more than CPU-bound processes ? Is it a good
approach ?
¢ Well, it is reasonable since I/O-bound processes take

very short CPU burst. So, the rest of CPU time can be
given to those CPU-bound lower-priority processes.

¢ CPU-bound processes want longer CPU time, not be
scheduled more frequent.

188 331 Operating Systems 59

Time Slices

* Linux takes time-sharing approach, so time slice
must be defined.

¢ It is hard to define a time slice that fits all the
cases.
¢ Longer time slices provide better utilization but
sacrifice the responsiveness.

¢ Shorter time slices help to get better responses, but
bad utilization.

¢ Still, most OSes (especially for desktop ones) uses
short time slices, e.g. 20 msec.

¢ Linux already increases priorities for 1/0-bound
processes. So, it uses relatively high time slices.

188 331 Operating Systems 60

(cont'd.)

¢ Linux adjusts time slices dynamically based on

nice value:
Nice Time Slice
-20 800 msec (MAX TIMESLICE)
0 100 msec (DEF TIMESLICE)

19 5 msec (MIN TIMESLICE)
Child Parent/2
¢ Additionally, a process does not need to use a

given time slice at once. e.g., 100 msec can be
used as 5 x 20 msec. This is good for interactivity.

188 331 Operating Systems 61

Linux — The O(1) Scheduler

* Implemented by Ingo Molnar in 2002
¢ All algorithms used run in constant time.
¢ Also, designed for SMP from the ground.

e Linux virtually supports unlimited number of CPUs.

¢ The basic data structure for scheduling is called
runqueue.

¢ Each CPU has its own runqueue.

¢ Each process is assigned to a single runqueue.

¢ So, a process (or thread) runs on a single CPU.
+ Good, we want to use CPU's cache.

¢ Linux heuristically adjusts workload for each CPU.

188 331 Operating Systems 62

(cont'd.)

¢ Each rungqueue consists of two 1-D arrays.
¢ Active array
¢ Expired array

¢ The arrays are bitmapped. Each bit corresponds a
scheduling priority.

¢ So, the size is 140-bit long, or 5 x 32-bit words.
¢ Both arrays are initialized to 0.

¢ For active array, a bit is set if there is a runnable
(i.e., ready) process at corresponding priority.

e e.g., if there is a runnable process of priority = 10, then
bit 10 is set.

188 331 Operating Systems 63

(cont'd.)

% priority 5
. queue
active—{1]0[0]1]0]1] [0}
expired—{1]0/0]0]0]0] [0}
| |
0 139
188 331 Operating Systems 64

(cont'd.)

* The schedule() is called when
¢ A process wants to sleep (i.e., wait)
* Preemption
¢ |t finds the first bit set in the active array.
¢ Using, e.g., bsfl on x86 or cntlzw on PPC.
* Then, it select the first process in the queue to run.

« If the process does not currently hold the CPU, then
switch context.

¢ A process will be scheduled to run until time slice
expired.

188 331 Operating Systems 65

(cont'd.)

* When time slice expired, schedule() recomputes
priority and time slice for the process, then moves
it to the expired array.
¢ Priority is adjust in range of -5 to +5, depends on nice

and its behavior (e.g., I/0 bound or CPU bound).

¢ Eventually, all the processes will spend their time
slice. So, all process will be moved to the expired
array, and the active array will be totally reset.

* Then, schedule() switches the expired array to
the active array, and vice versa.

188 331 Operating Systems 66

(cont'd.)

2
' o

—

active—[1]0][0[1[0[1] 0]

:

|]
0 139
188 331 Operating Systems 67
(cont'd.)
= ®
active—+[1]0]0]4[0]1] [0}

‘

l]
0 139
188 331 Operating Systems 68
(cont'd.)
?
4o 0 0
active—[1]0]0[1]0]1] [of

:

| |
0 139

188 331 Operating Systems 69

(cont'd.)

®
X

active——>[0]0[0[1]0[1] [0}

]
0 139
188 331 Operating Systems 70
(cont'd.)
active—>{0/0[0[0]0[0] [0f

:

188 331 Operating Systems 71

(cont'd.)

0JoJoJo]o]0]

188 331 Operating Systems 72

(cont'd.)

* On SMP, load balance() is called every 200 ms.
to balance processor workload.

¢ Tasks may be migrated from one processor to
another.
¢ This is bad for per-CPU code/data caching.
¢ So, they defines a concept of processor affinity.

* Still, keeping processor busy might be more
important.

188 331 Operating Systems 73

Linux — More for Interactivity

¢ If a process is explicitly interactive, Linux may
recompute time slice and reinsert to the active
array, given more chance to run.

* An interactive process will be moved to expired
array when expired starving(rq) returns true,
indicating that expired array is starving.

188 331 Operating Systems 74

Linux — Preemption

¢ Linux supports preemption in user space since
very beginning of the kernel development.

¢ A process may be preempted only at
¢ Ending of system call
¢ Ending of interrupt handler

+ 8o, basically, higher-priority user processes
cannot preempt lower-priority kernel processes ?
¢ Well, not anymore :)

¢ Linux supports kernel preemption since 2.5

¢ Kernel processes can be preempted by higher-priority
user processes.

¢ This is hard, especially for monolithic kernel.
188 331 Operating Systems 75

Linux — Kernel Preemption

¢ Initially, there was a low-latency patch for kernel
2.2.12 by Ingo Molnar.
¢ |tis a kind of kernel preemption.

¢ Then, in 2.4 era, Andrew Morton wrote another
low-latency patch for kernel 2.4 .x.
¢ Basically, this patch uses Ingo's approach.

¢ Extremely low latency, very popular among real-time
systems, and digital audio workstations.

¢ During development of kernel 2.5, Robert Love
modified the entire kernel to be preemptible.
¢ This has finally been merged into the 2.6 kernel.
¢ Fully preemptible — very good responsiveness.

188 331 Operating Systems 76

(cont'd.)

¢ Later, Ingo introduced the voluntary kernel
preempltion.

¢ Allow each kernel process decide whether it should be
preempted or not.

« Still very good interactivity.
¢ Today's Linux provides options for user to choose
preemption model.
* CONFIG PREEMPT NONE: good for server
» CONFIG PREEMPT VOLUNTARY: good for desktop
* CONFIG PREEMPT: for low-latency desktop

188 331 Operating Systems 77

(cont'd.)

¢ Linux also allows to tune timer interrupt frequency
¢ 100 Hz — good for server
¢ 250 Hz
* 300 Hz — good for digital video editing
¢ 1000 Hz — good for desktop
¢ No Hz — good for notebook
¢ Recently, Linux begins to support real-time.

« Not in the vanilla, but an official-maintained real-time
patch for the vanilla.
¢ There are also variants of RT-Linux available.
* Some of them are commercial products.

188 331 Operating Systems 78

Linux's Completely Fair Scheduler

e The O(1) scheduler is very nice. Still, it has some
deficiencies.

¢ A part of the scheduler is interactivity estimator, a kind
of heuristics to determine whether a process is
interactive.

¢ There are certain attacks against the heuristics, e.qg.,
fiftyp.c, thud.c, chew.c, ring-test.c,
massive intr.c.

¢ Some of users complained about desktop
interactivity.

¢ Con Kolivas implemented RSDL/SD scheduler in
the -ck patchset but the scheduler has never been
merged into Linux.

188 331 Operating Systems 79

(cont'd.)

¢ Ingo Molnar rewrote the CPU scheduler to
maximize CPU utilization as well as interactivity. It
has been finally named “Completely Fair Scheduler
(CFS)".
¢ Based on the fair queue idea of RSDL/SD.
¢ First patch: Apr 11 2007 08:47 4230 bytes
¢ First public release: Apr 13 2007 21:05 101011 bytes

¢ By-product: nanosecond granularity, modular scheduler
core.

¢ CFS has been merged into 2.6.23 and is now the
default CPU scheduler of Linux.

188 331 Operating Systems 80

(cont'd.)

¢ Basically, it is an implementation of a fair queue.

¢ Each of n running (ready) processes gets 1/n of CPU
time
¢ This implies runtime fairness.
¢ Arunqueue is associated to each processor.

¢ The rungueue maintains scheduling entity of
running processes.

¢ Each scheduling entity contains the virtual runtime
variable that represents amount of time (in nsec.)
the process executed.

188 331 Operating Systems 81

(cont'd.)

¢ To maintain fairness, CFS picks the process with
the smallest virtual runtime to run.

¢ Dequeue from the runqueue
¢ Add up execution time

¢ If the process is still ready, its scheduling entity is
reinserted (enqueue) into the runqueue.

¢ Question: What kind of data structure and
algorithm should we use for the runqueue ?

188 331 Operating Systems 82

(cont'd.)

¢ The CFS runqueue is a red-black tree.

¢ Ared-black tree, like AVL tree, is a self-balanced BST.

* Due to less strict in balance, a r-b tree is faster
insertion/deletion but slower retrieval compared to AVL.

¢ Imply O(log n).
¢ Key is the virtual runtime of each process

188 331 Operating Systems 83

(cont'd.)

* The R-B tree represents timeline of execution.
¢ No starvation

¢ Sleeping processes also get the same amount of
CPU time as running processes.

¢ Since a sleeper does not spend its time, CFS typically
runs it immediately after wake up to maintain fairness.

¢ Good for interactivity, no heuristics required.
e The /proc/sys/kernel/sched min_granularity
_ns is the tunable parameter.

¢ How quickly the scheduler will switch processes in
order to maintain fairness.

¢ No jiffies, no HZ, no time slices.

188 331 Operating Systems 84

(cont'd.)

¢ Is CFS better than the O(1) scheduler ?
¢ Theoretically, operations on r-b tree is O(log n), but with
32k-imited of PIDs, CFS is practically O(15).

* Even with the theoretically-limited 1G PIDs of 2.6 kernel,
it will be about 0O(30).

¢ The original O(1) scheduler is actually O(140).

 Blind tests suggested that CFS interactivity is as
good as SD, and both are definitely better than the
former O(1).

¢ Under CPU intensive tasks, CFS acts slightly
better than SD.

188 331 Operating Systems

85
(cont'd.)
CFS/SD Benchmark: for{{i=1: i < 108; i#+}}; do hackbench $i; done {(single core}
18
26,21 ——
el
H
2
»
H
5
3
18 28 38 8 56 66 7 80 98
nunber of processes (¥i}
188 331 Operating Systems 86

(cont'd.)
CFS/SD Benchmark: for{{i=@; i < 281} i++))}; do lat_ctx =s @ $i} done {single core)
7
2.6.21 ——

2.6,22-ck1
6.5 2,6.23-rcB-gfs-devel

nicro-seconds

28 48] 88 108 128 148 168 188 200
nunber of processes (i)

188 331 Operating Systems 87

CFS/SD Benchnark: pipe-test {(single core)

usecs/Loop

2.6.22-ck1
2.6.23-rcé-cfs-devel

6,21 ——

188 331 Operating Systems

220

SD versus CFS UT2004 frames per sec performance:

FPS

80

T
28.

2.6.22-ck1+NOP-yield-hack

2.6.23-1c1(CFS)

22-ck1 —+—

188 331 Operating Systems

(cont'd.)

45

4 6
system load (CPUrintense tasks running)

SD versus CFS Quake3 frames per sec performance:

40 &

o\

30 - \

FPS
s

20 \

T T

———

[eSS

T
2.6.22-ck1 —+—
2.6.2:

2-clevi9

188 331 Operating Systems

] 3
system load (CPUsintense tasks running)

88

89

90

Linux — Group Scheduling

¢ Written by Srivatsa Vaddagiri as an extension of
CFS. It has been merged in CFS v17.

¢ Allow to distribute CPU time among groups of
processes

¢ e.g., users may get exact share of CPU time to run
their processes.

¢ Similar to weighted fair queue.
* Weights can be controlled via /sys.

* Merged into kernel tree since 2007-07-01,
released with 2.6.24.

188 331 Operating Systems 91

(cont'd.)

Weight = 512 Weight = 1024 Weight = 512

m>m

P1) (P2) (P3 P4) P5) (P8
8.33% 8.33% 8.33% 50% 125% 12.5%

¢ Group can be UID or cgroup.

¢ See Documentation/scheduler/sched-design-
CFS. txt

188 331 Operating Systems 92

Brain Fuck Scheduler

¢ In August 31 2009, Con Kolivas came back with a
simple scheduler to minimizing latency - BFS: the
Brain Fuck Scheduler.

* It loosely bases on the Earliest Eligible Virtual
Deadline First (EEVDF) algorithm and the
Staircase Deadline.

¢ Conceptually, EEVDF is very similar to CFS but provide
(virtual) deadline fairness instead of (virtual) runtime
fairess.

¢ Some distro. use BFS as the default, e.g.,
e Zenwalk 6.4, PCLinuxOS 2010
¢ CyanogenMod

188 331 Operating Systems 93

(cont'd.)

¢ But, BFS comes with prices:
¢ Sacrifice throughput for latency, lead to larger
turnaround time.
¢ Not scalable

* Need to globally lock the global runqueue across
processors

* CK suggests BFS is for systems with processors < 16.
* So, this will never be merged into the mainline kernel.

188 331 Operating Systems 94

Automatic task group creation

¢ In 2010-10-19, Mike Galbraith wrote a small patch
to improve desktop responsiveness.
¢ Based on the discussions and Linus's suggestion
about automatically create task groups per tty.
¢ First patch: 8 files changed, 186 insertions, 1 deletion
¢ In 2010-11-15, the version 3 of this patch
released. It's been reviewed, tested (by phoronix),
and finally slashdotted.
¢ 9 files changed, 224 insertions, 9 deletions

« Interactivity performance is comparable to BFS, but
with very small performance/scalability penalties.

¢ Merged to 2.6.38.

188 331 Operating Systems 95

