3 — Processes

3 — Processes

* To understand the concept of processes
¢ Process operations
¢ Process management
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Processes ?

* Early computer systems allowed only one program
to be executed at a time.

¢ Today computer systems allow multiple programs
to be loaded into memory and to be executed
concurrently.

* This requires the notion of a what to call all the
CPU activities
¢ A batch system executes jobs.
¢ Atime-sharing system has user programs or tasks.
¢ Most of us called them programs.
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(cont'd.)

¢ All of these are very similar. We even use these
terms interchangeably. To make it more clearer,
let's call all of them processes.

¢ The most widely accepted definition is that “a
process is a program in execution”.

¢ Note that a program itself is not a process since itis a
passive entity stored on a storage device.

e The CPU executes one instruction after another
until the process completes.
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(cont'd.)
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(cont'd.)

¢ A process is the unit of work in a modern time-
sharing system.
¢ Itis more than the program code, i.e., the text section.
¢ ltincludes stack, which contains temporary data, and
data section, which contains global variables.

¢ |t also includes current activity represented by the
value of the program counter and the content of the
processor's registers.
¢ Additionally, a process may hold a number of
resources, e.g,
¢ /O devices (keyboard, mouse, ...)
e Files
¢ Network connections
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(cont'd.)

* Two processes may be associated with the same
programs, but they are considered two separate
execution sequences.

* The text sections are equivalent, but the data sections
differ.

¢ In some systems, the text sections may be shared
among the processes.

188 331 Operating Systems

|
(cont'd.)
Oxffffffff .
Kernel Virtual Memory
0xcH000000 used by
Stack function calls
%esp U
0x40000000 _
Run-time Heap <+—malloc()
Read/Write Data Segment
(data .bss) load from

Read-only Data Segment executable
0x08048000 {-init .text .rodata)
0x00000000 Unused
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Process States

Interrupt

Admitted

Running

/O or event
wait

1/0 or event

completion Scheduler dispatch

Waiting
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Context Switches

* The states imply that a process does not always
run on a processor.
¢ More or less, it has to perform I/O operations. That

means the processor is idle, and another process may
utilize it.

* When a processor switches from one process to
another, the operating system must save states of
the old process, and load saved states of the new
process. This is called context switch.

¢ The context (the process state) is represented in
the Process Control Block.
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Process Control Blocks

¢ A data structure containing all information required
by the OS to execute the process properly, e.g.,

Pointer State

Process ID
Program counter

Registers

Memory limits
List of open files
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(cont'd.)

¢ Process state: new, ready, running, ...

* Program counter: the address of the next
instruction to be executed for this process

¢ Registers: state of processor's registers

¢ CPU-scheduling information: priority, pointer to
scheduling queue, other scheduling parameters

¢ Memory-management information: base and
limit registers, page or segment table, ...

* Accounting information: CPU usage and limit,
account number, process number, ...
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(cont'd.)

¢ /O-management information: I/O device
allocations, list of open files, ...
¢ For example, on Linux, this is the task_struct,
defined in include/linux/sched.h.
« ltis quite a large structure, the definition alone is about
300 SLOCs, containing many other structures
¢ Theregister partis in the thread struct,
e Inarch/*/include/asm/processor.h

¢ Let's see the source.
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Switching from one process to another

PO 5| Operating System || P1
[ | Save state into PCBO 2
‘ Load state from PCB1
Q
h=
| Save state into PCB1
3 wee 2
I | Load state from PCBO kS,
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(cont'd.)

¢ On Linux, schedule() calls context switch() to

switch context.
¢ Described in in kernel/sched.c
¢ Literally, context switch() has two parts
¢ Memory management part to prepare memory for the

new context.
* Architecture-dependent part, switch to(), to prepare
registers and stack so that the new context could start.
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Process Scheduling

+ S0, the context switch is a pure overhead, totally
wasteful, and becomes performance bottleneck.
¢ Can we avoid context switch ?
¢ If processors > processes ?
* Optimally, we want to maximize utilization and
interactivity.
¢ The objective of multiprogramming is to have some
process running at all times.
*+ Maximize CPU utilization — less context switch.

¢ The objective of time-sharing is to switch among
processes frequently.

* More interactivity — more context switch.

¢ On Linux, see vmstat.
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(cont'd.)

¢ On a uniprocessor system,only one process can
be running at a time.

¢ Because there is only one processing unit ?
¢ Yes, there are parallelism techniques like, e.g.,
e Instruction pipeline
» Superscalar
« Intel® Hyper-Threading™ technology
* Multi-core technology

¢ Doesn't that allows us to execute multiple instructions
atatime ?

¢ Does it allow us to run multiple processes at a time ?
* Let's see ...
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Superscalar

A /\ 4
v
Prefetch

- pecode ™ Microcode I

Control Unit i— o

U-pipe | V-pipe

V\/’r ﬂ;‘ Data Cache I_.
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Intel® Pentium®

Instruction Cache

ALU

sng eleq
sng ssalppy

FPU

Intel® Hyper-Threading™ Technology

an q ¢ An Architecture State (AS)
Q’? <§L holds states of the process in
1 I execution.

¢ Intel HT™ processors contain
multiple ASes so that a
processor could hold multiple
processes at a time.
Processing Unit * This creates an illusion image
of multiprocessors.

* Multiple ASes increase the

switching performance.

¢ Sacrifice 5% in size.
¢ Gain 30% in performance.
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Multi-core Processors

¢ Multiple processing units in a

C) single package.

¢ It may share other units in a
chip, e.g., caches, buses, ...

\_Ais_[ \_Ais_‘ ¢ Intel Core™, Core 2™

* AMD Athlon™ X2
Core0| [Core1| | o Sony PS3's cell processor
¢ 1 x 64-bit POWER

« 8 x 128-bit SIMD RISC

¢ In 2006, Intel has showed a
wafer of 80-core processors.

¢ Commercialized in 5 years.
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Levels of Parallelism

¢ Pipelines and superscalar are instruction-level
parallelism.

¢ There are also techniques like branch prediction, out-
of-order execution, ...

¢ |t's that two or more instructions in the same context
can be executed in parallel, not multiple processes.

¢ Those Intel HT™ or multi-core technologies allow
a processor to hold multiple processes at a time.

¢ These are multiprocessing or multithreading — a much
higher-level of parallelism.

¢ Can process scheduling exploit instruction-level
parallelism, multiprocessing, or multithreading ?
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Scheduling Queues

¢ Job queue contains all processes in the system.

¢ Ready queue contains all processes residing in the
memory, and are ready to execute.

¢ Device queue contains all processes waiting for a
particular I/O device.

e Each device has it own queue.
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(cont'd.)
Ready
Queue
Disk 0 head
Queue tail
Disk 1
Queue
Term 0 | head PCB5
Queue tail
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Queuing Diagram

—» Ready queue » CPU
——

1/0 queue /O request  me—

Time slice |

expired
I
Child Fork a child e—
executes

Interrupt Wait foran [, |
occurs interrupt
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Schedulers

* A component to select processes from queues in
some fashion.

* Short-term scheduler (or CPU scheduler) selects a
process from ready queue to be executed next.

¢ Itis executed frequently, e.g., once every 100 msec, so
it must be fast.

¢ Ifit takes 10 msec, then it takes 10/(10 + 100) ~ 9% of
CPU time.

e Long-term scheduler (or job scheduler) selects
processes spooled in a mass-storage device, and
loads them into memory (ready queue) for
execution.
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(cont'd.)

* The long-term scheduler executes much less
frequently, e.g., minutes. This kind of scheduler
controls the degree of multiprogramming — the
number of processes in memory.

¢ The process can be

¢ |/O-bound process
¢ CPU-bound process

¢ The long-term scheduler must select a good mix of
I/O-bound and CPU-bound processes.

* The long-term scheduler can be minimum or event
absent, e.g., UNIX.
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(cont'd.)

¢ Some systems introduce the medium-term scheduler
to remove processes from memory.

¢ The process may be reintroduced into memory and its
execution can be continued.

¢ This scheme is called swapping.

swap in Partially executed swap out
swapped-out processes

Y
—» Ready queue ' » CPU

I{e] /0 queue =+— /O request
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Creating a Process

¢ Processes are like human: they are born, live, may
give a birth to children, then die.

* The creating process, called a parent process,
creates a new process, which is a child of the
creating process.

¢ A child process may create other processes,
forming a tree of processes
e Try pstree.

* How do those children live ?
¢ With their parent or separately ?
¢ Cooperative or in parallel ?
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(cont'd.)

+ Resource sharing ?
¢ Parent and children share all resources.
¢ Children share subsets of parent's resources.
¢ Parent and children share no resources.
¢ Concurrent execution ?
¢ Parent and children execute concurrently.
¢ Parent waits until children terminate.
* Executable and address space ?
¢ The child is a duplication of the parent.
* eg., fork
¢ Child has a program loaded into it.

* e.g., exec
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(cont'd.)

int main () {

int pid;

pid = fork ();

if (pid < 0) {
exit (-1);

} else if (pid == 0) {
execlp (“/bin/1s”, “1s”, NULL);

} else {
wait (NULL);
printf (“child exit\n");
exit (0);
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‘ Pld = fork (); \«
\ PID = 8000

——

‘ pid = fork ():
OXOO /---
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(cont'd.)

PID 200
getty

fork()

exec() exec()

A
PID 200

csh
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Terminating a Process

* Process executes the last statement and asks the

operating system to delete it (exit).

¢ Child may return data to its parent via wait.

¢ Resources are deallocated by the operating system.
¢ Parent may calls abort to terminate children.

¢ Parent detects that a child has exceeded allocated

resources.
¢ Task assigned to the child is no longer required.
¢ Parentis exiting
» Operating system may not allow any child to continue.
* All children are terminated — cascading termination.
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Cooperating Processes

¢ The concurrent processes may either be

¢ Independent process — cannot affect or be affected by
execution of other processes.

* Cooperating process — can affect or be affected by
execution of other processes

* Advantages of cooperating processes
¢ Information sharing
¢ Computation speedup
¢ Modularity
¢ Convenience
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(cont'd.)

¢ There are problems we need to solved when
multiple processes cooperatively are running on a
single system:
¢ Producer-Consumer Problems
¢ Interprocess Communications
¢ Deadlocks
* etc.
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