3 — Processes

3 — Processes

* To understand the concept of processes
¢ Process operations
¢ Process management

188 331 Operating Systems

Processes ?

* Early computer systems allowed only one program
to be executed at a time.

¢ Today computer systems allow multiple programs
to be loaded into memory and to be executed
concurrently.

* This requires the notion of a what to call all the
CPU activities
¢ A batch system executes jobs.
¢ Atime-sharing system has user programs or tasks.
¢ Most of us called them programs.

188 331 Operating Systems



(cont'd.)

¢ All of these are very similar. We even use these
terms interchangeably. To make it more clearer,
let's call all of them processes.

¢ The most widely accepted definition is that “a
process is a program in execution”.

¢ Note that a program itself is not a process since itis a
passive entity stored on a storage device.

e The CPU executes one instruction after another
until the process completes.

188 331 Operating Systems

(cont'd.)

Memory

n
Processor

Storage

188 331 Operating Systems

(cont'd.)

¢ A process is the unit of work in a modern time-
sharing system.
¢ Itis more than the program code, i.e., the text section.
¢ ltincludes stack, which contains temporary data, and
data section, which contains global variables.

¢ |t also includes current activity represented by the
value of the program counter and the content of the
processor's registers.
¢ Additionally, a process may hold a number of
resources, e.g,
¢ /O devices (keyboard, mouse, ...)
e Files
¢ Network connections

188 331 Operating Systems



(cont'd.)

* Two processes may be associated with the same
programs, but they are considered two separate
execution sequences.

* The text sections are equivalent, but the data sections
differ.

¢ In some systems, the text sections may be shared
among the processes.

188 331 Operating Systems

|
(cont'd.)
Oxffffffff .
Kernel Virtual Memory
0xcH000000 used by
Stack function calls
%esp U
0x40000000 _
Run-time Heap <+—malloc()
Read/Write Data Segment
(data .bss) load from

Read-only Data Segment executable
0x08048000 {-init .text .rodata)
0x00000000 Unused

188 331 Operating Systems

Process States

Interrupt

Admitted

Running

/O or event
wait

1/0 or event

completion Scheduler dispatch

Waiting

188 331 Operating Systems



Context Switches

* The states imply that a process does not always
run on a processor.
¢ More or less, it has to perform I/O operations. That

means the processor is idle, and another process may
utilize it.

* When a processor switches from one process to
another, the operating system must save states of
the old process, and load saved states of the new
process. This is called context switch.

¢ The context (the process state) is represented in
the Process Control Block.

188 331 Operating Systems 10

Process Control Blocks

¢ A data structure containing all information required
by the OS to execute the process properly, e.g.,

Pointer State

Process ID
Program counter

Registers

Memory limits
List of open files

188 331 Operating Systems 11

(cont'd.)

¢ Process state: new, ready, running, ...

* Program counter: the address of the next
instruction to be executed for this process

¢ Registers: state of processor's registers

¢ CPU-scheduling information: priority, pointer to
scheduling queue, other scheduling parameters

¢ Memory-management information: base and
limit registers, page or segment table, ...

* Accounting information: CPU usage and limit,
account number, process number, ...

188 331 Operating Systems 12



(cont'd.)

¢ /O-management information: I/O device
allocations, list of open files, ...
¢ For example, on Linux, this is the task_struct,
defined in include/linux/sched.h.
« ltis quite a large structure, the definition alone is about
300 SLOCs, containing many other structures
¢ Theregister partis in the thread struct,
e Inarch/*/include/asm/processor.h

¢ Let's see the source.

188 331 Operating Systems

Switching from one process to another

PO 5| Operating System || P1
[ | Save state into PCBO 2
‘ Load state from PCB1
Q
h=
| Save state into PCB1
3 wee 2
I | Load state from PCBO kS,
188 331 Operating Systems 14
|
(cont'd.)

¢ On Linux, schedule() calls context switch() to

switch context.
¢ Described in in kernel/sched.c
¢ Literally, context switch() has two parts
¢ Memory management part to prepare memory for the

new context.
* Architecture-dependent part, switch to(), to prepare
registers and stack so that the new context could start.

188 331 Operating Systems



Process Scheduling

+ S0, the context switch is a pure overhead, totally
wasteful, and becomes performance bottleneck.
¢ Can we avoid context switch ?
¢ If processors > processes ?
* Optimally, we want to maximize utilization and
interactivity.
¢ The objective of multiprogramming is to have some
process running at all times.
*+ Maximize CPU utilization — less context switch.

¢ The objective of time-sharing is to switch among
processes frequently.

* More interactivity — more context switch.

¢ On Linux, see vmstat.
188 331 Operating Systems 16

(cont'd.)

¢ On a uniprocessor system,only one process can
be running at a time.

¢ Because there is only one processing unit ?
¢ Yes, there are parallelism techniques like, e.g.,
e Instruction pipeline
» Superscalar
« Intel® Hyper-Threading™ technology
* Multi-core technology

¢ Doesn't that allows us to execute multiple instructions
atatime ?

¢ Does it allow us to run multiple processes at a time ?
* Let's see ...

188 331 Operating Systems 17

Pipelines

2 T3 T4 T5 TB6 T7

O T T
Non-Pipeline m

Pipeline IF

O
@
Q
Q
=%
)

188 331 Operating Systems 18



Superscalar

A /\ 4
v
Prefetch

- pecode ™ Microcode I

Control Unit i— o

U-pipe | V-pipe

V\/’r ﬂ;‘ Data Cache I_.

188 331 Operating Systems

Intel® Pentium®

Instruction Cache

ALU

sng eleq
sng ssalppy

FPU

Intel® Hyper-Threading™ Technology

an q ¢ An Architecture State (AS)
Q’? <§L holds states of the process in
1 I execution.

¢ Intel HT™ processors contain
multiple ASes so that a
processor could hold multiple
processes at a time.
Processing Unit * This creates an illusion image
of multiprocessors.

* Multiple ASes increase the

switching performance.

¢ Sacrifice 5% in size.
¢ Gain 30% in performance.

188 331 Operating Systems 20

Multi-core Processors

¢ Multiple processing units in a

C) single package.

¢ It may share other units in a
chip, e.g., caches, buses, ...

\_Ais_[ \_Ais_‘ ¢ Intel Core™, Core 2™

* AMD Athlon™ X2
Core0| [Core1| | o Sony PS3's cell processor
¢ 1 x 64-bit POWER

« 8 x 128-bit SIMD RISC

¢ In 2006, Intel has showed a
wafer of 80-core processors.

¢ Commercialized in 5 years.

188 331 Operating Systems



Levels of Parallelism

¢ Pipelines and superscalar are instruction-level
parallelism.

¢ There are also techniques like branch prediction, out-
of-order execution, ...

¢ |t's that two or more instructions in the same context
can be executed in parallel, not multiple processes.

¢ Those Intel HT™ or multi-core technologies allow
a processor to hold multiple processes at a time.

¢ These are multiprocessing or multithreading — a much
higher-level of parallelism.

¢ Can process scheduling exploit instruction-level
parallelism, multiprocessing, or multithreading ?

188 331 Operating Systems 22

Scheduling Queues

¢ Job queue contains all processes in the system.

¢ Ready queue contains all processes residing in the
memory, and are ready to execute.

¢ Device queue contains all processes waiting for a
particular I/O device.

e Each device has it own queue.

188 331 Operating Systems 23

(cont'd.)
Ready
Queue
Disk 0 head
Queue tail
Disk 1
Queue
Term 0 | head PCB5
Queue tail

188 331 Operating Systems 24



Queuing Diagram

—» Ready queue » CPU
——

1/0 queue /O request  me—

Time slice |

expired
I
Child Fork a child e—
executes

Interrupt Wait foran [, |
occurs interrupt

188 331 Operating Systems 25

Schedulers

* A component to select processes from queues in
some fashion.

* Short-term scheduler (or CPU scheduler) selects a
process from ready queue to be executed next.

¢ Itis executed frequently, e.g., once every 100 msec, so
it must be fast.

¢ Ifit takes 10 msec, then it takes 10/(10 + 100) ~ 9% of
CPU time.

e Long-term scheduler (or job scheduler) selects
processes spooled in a mass-storage device, and
loads them into memory (ready queue) for
execution.

188 331 Operating Systems 26

(cont'd.)

* The long-term scheduler executes much less
frequently, e.g., minutes. This kind of scheduler
controls the degree of multiprogramming — the
number of processes in memory.

¢ The process can be

¢ |/O-bound process
¢ CPU-bound process

¢ The long-term scheduler must select a good mix of
I/O-bound and CPU-bound processes.

* The long-term scheduler can be minimum or event
absent, e.g., UNIX.

188 331 Operating Systems 27



(cont'd.)

¢ Some systems introduce the medium-term scheduler
to remove processes from memory.

¢ The process may be reintroduced into memory and its
execution can be continued.

¢ This scheme is called swapping.

swap in Partially executed swap out
swapped-out processes

Y
—» Ready queue ' » CPU

I{e] /0 queue =+— /O request

188 331 Operating Systems 28

Creating a Process

¢ Processes are like human: they are born, live, may
give a birth to children, then die.

* The creating process, called a parent process,
creates a new process, which is a child of the
creating process.

¢ A child process may create other processes,
forming a tree of processes
e Try pstree.

* How do those children live ?
¢ With their parent or separately ?
¢ Cooperative or in parallel ?

188 331 Operating Systems 29

(cont'd.)

+ Resource sharing ?
¢ Parent and children share all resources.
¢ Children share subsets of parent's resources.
¢ Parent and children share no resources.
¢ Concurrent execution ?
¢ Parent and children execute concurrently.
¢ Parent waits until children terminate.
* Executable and address space ?
¢ The child is a duplication of the parent.
* eg., fork
¢ Child has a program loaded into it.

* e.g., exec
188 331 Operating Systems 30



(cont'd.)

int main () {

int pid;

pid = fork ();

if (pid < 0) {
exit (-1);

} else if (pid == 0) {
execlp (“/bin/1s”, “1s”, NULL);

} else {
wait (NULL);
printf (“child exit\n");
exit (0);

188 331 Operating Systems

‘ Pld = fork (); \«
\ PID = 8000

——

‘ pid = fork ():
OXOO /---

188 331 Operating Systems

(cont'd.)

PID 200
getty

fork()

exec() exec()

A
PID 200

csh

188 331 Operating Systems

31

32

33



Terminating a Process

* Process executes the last statement and asks the

operating system to delete it (exit).

¢ Child may return data to its parent via wait.

¢ Resources are deallocated by the operating system.
¢ Parent may calls abort to terminate children.

¢ Parent detects that a child has exceeded allocated

resources.
¢ Task assigned to the child is no longer required.
¢ Parentis exiting
» Operating system may not allow any child to continue.
* All children are terminated — cascading termination.

188 331 Operating Systems

Cooperating Processes

¢ The concurrent processes may either be

¢ Independent process — cannot affect or be affected by
execution of other processes.

* Cooperating process — can affect or be affected by
execution of other processes

* Advantages of cooperating processes
¢ Information sharing
¢ Computation speedup
¢ Modularity
¢ Convenience

188 331 Operating Systems

(cont'd.)

¢ There are problems we need to solved when
multiple processes cooperatively are running on a
single system:
¢ Producer-Consumer Problems
¢ Interprocess Communications
¢ Deadlocks
* etc.

188 331 Operating Systems

34

35

36



