Drawing a line segment

Line segments are basic graphics primitives. To efficiently display goodquality line segments is a fundamental problem in real-time computer graphics. Three methods for drawing a line segment will be discussed in this lesson, leading to Bresenham's algorithm which uses on average one integer addition per pixel to rasterize a line segment.

Input: starting point $(x s, y s)$ and ending point $(x e, y e)$, where $x s, y s, x e, y e$ are integers.

Assumptions:

- ye $\geq y s, x e>x s$, and $|y e-y s| \leq|x e-x s|$. So $0 \leq k=(y e-y s) /(x e-$ $x s) \leq 1, k$ the slope. Note that any other line segment can be transformed to such a position by properly choosing the starting point or swapping x and y coordinates, if necessary.
- One pixel is to be found on each vertical line intersecting the given line segment.
- A sequence of pixels will be determined to approximate the line segment.

Method 1:

For each unit increment in x-direction, y is increased by k, the slope. If the intersection between the vertical line $x=i$ and the given line segmeny is $\left(i, y_{i}\right)$, the intersection between the next vertical line $x=i+1$ and the given line is $\left(i+1, y_{i}+k\right)$. See the figure.

Raster Line Drawing

Note that, since pixel positions are needed, we must round $\left(i, y_{i}\right), x s \leq i \leq$ $x e$, to the nearest integer point $\left(i,\left\lfloor y_{i}+0.5\right\rfloor\right)$. The pseudo code is as follows.

Line Drawing 1:
long x, y;
float k, yy;

$$
\begin{aligned}
& \mathrm{k}=(\mathrm{ye}-\mathrm{ys}) /(\mathrm{xe}-\mathrm{xs}) ; \\
& \mathrm{yy}=\mathrm{ys} ; \\
& \text { for }(\mathrm{x}=\mathrm{xs} ; \mathrm{x}<=\mathrm{xe} ; \mathrm{x}++) \\
& \{ \\
& \qquad \mathrm{y}=\text { ftrunc }(\mathrm{yy}+0.5) \text {; }
\end{aligned}
$$

$$
\begin{aligned}
& \text { write_pixel }(x, y) \text {; } \\
& \text { yy = yy }+k ;
\end{aligned}
$$

\}

Remarks: Floating-point operations are used in this solution. Floating point operations are slower than integer operations.

Method 2:

Idea: Suppose that the distance e of $\left(i, y_{i}\right)$ to the horizontal grid line right below it is recorded. Then the lower pixel should be chosen if and only if $e<0.5$. To facilitate this test, we denote $e-0.5$ by e instead. Thus, the lower pixel is chosen if and only if $e<0$. Pay attention to how e is updated in each step.
long x, y;
float k, e;

$$
\begin{aligned}
& \mathrm{k}=(\mathrm{ye}-\mathrm{ys}) /(\mathrm{xe}-\mathrm{xs}) ; \\
& \mathrm{x}=\mathrm{xs} ; \mathrm{y}=\mathrm{ys} ; \\
& \mathrm{e}=-0.5 ; \\
& \text { for }(\mathrm{x}=\mathrm{xs} ; \mathrm{x}<=\mathrm{xe} ; \mathrm{x}++) \\
& \{ \\
& \text { if }(\mathrm{e}<0) \\
& \text { else } \\
& \left\{\begin{array}{l}
\text { write_pixel }(\mathrm{x}, \mathrm{y}) \text {; } \\
\text { \{ } \\
y=y+1 ;
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \quad \text { write_pixel }(x, y) \text {; } \\
& e=e-1 \\
& \} \\
& e=e+k ;
\end{aligned}
$$

\}

Remark: Floating-point operations are still used in method 2.

Method 3:

Idea: We use program transformation to translate method 2 into a new algorithm. The key observation is: it is the sign of e, not its value, that determines the next pixel to be selected.

Let $a=x e-x s, b=y e-y s$. Then $k=b / a$. All the statements in method 2 that affect the value of e are

$$
e=-0.5 ; \quad e=e-1 ; \quad e=e+\frac{b}{a} .
$$

Multiplying $2 a$ to both sides of these three expressions, we obtain

$$
2 a * e=-a ; \quad 2 a * e=2 a * e-2 a ; \quad 2 a * e=2 a * e+2 b ;
$$

Naming $2 a * e$ by d yields

$$
d=-a ; \quad d=d-2 a ; \quad d=d+2 b .
$$

Using these three expressions to replace the original statements that are used to generate e in method 2 yields the following pseudo code.
long $x, y, d x, d y, d ;$

$$
\mathrm{x}=\mathrm{xs} ; \mathrm{y}=\mathrm{ys} ;
$$

```
dx = 2*(xe - xs); /* dx = 2a */
dy = 2*(ye - ys); /* dy = 2b */
d = -(xe - xs); /* d = -a */
for(x=xs; x<=xe; x++)
{
            if(d < 0)
                write(x, y);
            else
            {
                y = y + 1;
                write_pixel(x,y);
                d = d - dx;
            }
    d = d + dy;
}
```

Remarks: This algorithm uses integer operations only. It can be further simplified by re-arranging some statements.

Bresenham's algorithm

By combining the statement $\mathrm{d}=\mathrm{d}-\mathrm{dx}$; and $\mathrm{d}=\mathrm{d}+\mathrm{dy}$; in the case of moving up diagonally, we have the final algorithm, which on average uses one integer addition and one sign testing per pixel.
long $x, y, d x, d y, d y _x, d ;$

$$
\begin{aligned}
& x=x s ; y=y s ; \\
& d x=2 *(x e-x s) ; / * d x=2 a * / \\
& d y=2 *(y e-y s) ; / * d y=2 b * / \\
& d y _x=d y-d x ; \\
& d=-(x e-x s) ; / * d=-a * / \\
& \text { for }(x=x s ; x<=x e ; x++) \\
& \begin{array}{l}
\{ \\
\quad \text { if }(d<0) \\
\quad \text { else } \\
\text { \{ } \\
\quad y=d+d y ;
\end{array} \\
& \text { \} } \quad \begin{array}{l}
d=d+d y _x ;
\end{array} \\
& \text { write_pixel }(x, y) ;
\end{aligned}
$$

\}

Questions:

Can you come up with a line drawing algorithm that is faster than Bresenham's algorithm?

