
LESSON 3: Drawing a line segment. Sept. 21, 2001. 1

Drawing a line segment

Line segments are basic graphics primitives. To e�ciently display good-

quality line segments is a fundamental problem in real-time computer graph-

ics. Three methods for drawing a line segment will be discussed in this lesson,

leading to Bresenham's algorithm which uses on average one integer addition

per pixel to rasterize a line segment.

Input: starting point (xs; ys) and ending point (xe; ye), where xs; ys; xe; ye

are integers.

Assumptions:

� ye � ys, xe > xs, and jye� ysj � jxe� xsj. So 0 � k = (ye� ys)=(xe�

xs) � 1, k the slope. Note that any other line segment can be transformed

to such a position by properly choosing the starting point or swapping x and

y coordinates, if necessary.

� One pixel is to be found on each vertical line intersecting the given line

segment.

� A sequence of pixels will be determined to approximate the line segment.

Method 1:

For each unit increment in x-direction, y is increased by k, the slope. If

the intersection between the vertical line x = i and the given line segmeny is

(i; yi), the intersection between the next vertical line x = i+ 1 and the given

line is (i+ 1; yi + k). See the �gure.



LESSON 3: Drawing a line segment. Sept. 21, 2001. 2

k

x=i

(i,Yi)

(i+1,Yi+k)
e

Raster Line Drawing

Note that, since pixel positions are needed, we must round (i; yi), xs � i �

xe, to the nearest integer point (i; byi + 0:5c). The pseudo code is as follows.

Line Drawing 1:

long x, y;

float k, yy;

k = (ye - ys)/(xe - xs);

yy = ys;

for(x=xs; x<=xe; x++)

{

y = ftrunc(yy + 0.5);



LESSON 3: Drawing a line segment. Sept. 21, 2001. 3

write_pixel(x,y);

yy = yy + k;

}

Remarks: Floating-point operations are used in this solution. Floating

point operations are slower than integer operations.

Method 2:

Idea: Suppose that the distance e of (i; yi) to the horizontal grid line right

below it is recorded. Then the lower pixel should be chosen if and only if

e < 0:5. To facilitate this test, we denote e � 0:5 by e instead. Thus, the

lower pixel is chosen if and only if e < 0. Pay attention to how e is updated

in each step.

long x, y;

float k, e;

k = (ye - ys)/(xe - xs);

x = xs; y = ys;

e = -0.5;

for(x=xs; x<=xe; x++)

{

if(e < 0)

write_pixel(x,y);

else

{

y = y + 1;



LESSON 3: Drawing a line segment. Sept. 21, 2001. 4

write_pixel(x,y);

e = e - 1;

}

e = e + k;

}

Remark: Floating-point operations are still used in method 2.

Method 3:

Idea: We use program transformation to translate method 2 into a new

algorithm. The key observation is: it is the sign of e, not its value, that

determines the next pixel to be selected.

Let a = xe�xs, b = ye�ys. Then k = b=a. All the statements in method

2 that a�ect the value of e are

e = �0:5; e = e� 1; e = e+
b

a
:

Multiplying 2a to both sides of these three expressions, we obtain

2a � e = �a; 2a � e = 2a � e� 2a; 2a � e = 2a � e+ 2b;

Naming 2a � e by d yields

d = �a; d = d� 2a; d = d+ 2b:

Using these three expressions to replace the original statements that are used

to generate e in method 2 yields the following pseudo code.

long x, y, dx, dy, d;

x = xs; y = ys;



LESSON 3: Drawing a line segment. Sept. 21, 2001. 5

dx = 2*(xe - xs); /* dx = 2a */

dy = 2*(ye - ys); /* dy = 2b */

d = -(xe - xs); /* d = -a */

for(x=xs; x<=xe; x++)

{

if(d < 0)

write(x, y);

else

{

y = y + 1;

write_pixel(x,y);

d = d - dx;

}

d = d + dy;

}

Remarks: This algorithm uses integer operations only. It can be further

simpli�ed by re-arranging some statements.

Bresenham's algorithm

By combining the statement d = d - dx; and d = d + dy; in the case

of moving up diagonally, we have the �nal algorithm, which on average uses

one integer addition and one sign testing per pixel.

long x, y, dx, dy, dy_x, d;



LESSON 3: Drawing a line segment. Sept. 21, 2001. 6

x = xs; y = ys;

dx = 2*(xe - xs); /* dx = 2a */

dy = 2*(ye - ys); /* dy = 2b */

dy_x = dy - dx;

d = -(xe - xs); /* d = -a */

for(x=xs; x<=xe; x++)

{

if(d < 0)

d = d + dy;

else

{

y = y + 1;

d = d + dy_x;

}

write_pixel(x,y);

}

Questions:

Can you come up with a line drawing algorithm that is faster than Bresen-

ham's algorithm?


