## Transformations

## Transformations

- Alter position of a point
- Coordinate system
- modeling


## Translation

- Add constant corresponding to amount to be translated
- If constant is positive, point moves towards increasing values
- If constant is negative, point moves in direction of decreasing values
- Can add separate constant for each axis

Translation in 2-D


## Translation in 3-D

- Translation in three dimensions requires one additional equation

$$
z^{\prime}=z+t_{z}
$$

Translation in 2-D (concl'd)


## Scaling (1 of 5)

- Multiplication by factor (constant) corresponding to amount to be scaled along axis
- If absolute value of factor exceeds unity, point moves away from origin
- If absolute value of factor less than unity, point moves towards origin
- If factor negative, point is reflected (and moved)
- Applying scaling to object moves it away from or towards origin
- To avoid movement of object, scaling must be relative to some fixed point


## Scaling (2 of 5)

- Scaling without movement requires translating object so that fixed point becomes origin, then scaling it, then translating back
- What is fixed point?
- $E g$ : tree-relative to ground position
- This is example of concatenation of transformations
- Uniform scaling-same scale factors on all axes
- Differential scaling - scaling on some axis (axes) different than on other axis (axes)



## Scaling in 3-D

- Scaling in three dimensions requires one additional equation

$$
z^{\prime}=s_{z} z
$$



- $\theta$ is counter clockwise angle of rotation
- $\theta_{0}$ is counter clockwise angle to $P(x, y)$ in standard position (measured from horizontal line through origin)
- $r$ is distance to $P$ from origin (same as to $P^{\prime}$ from origin)


## Rotation (cont'd)

$$
\begin{gathered}
\cos \left(\theta_{0}+\theta\right)=x^{\prime} / r \\
\cos \theta_{0} \cos \theta-\sin \theta_{0} \sin \theta=x^{\prime} / r \\
\frac{x}{r} \cos \theta-\frac{y}{r} \sin \theta=x^{\prime} / r \\
\frac{x^{\prime}=x \cos \theta-y \sin \theta}{\sin \left(\theta_{0}+\theta\right)=y^{\prime} / r} \\
\sin \theta_{0} \cos \theta+\cos \theta_{0} \sin \theta=y^{\prime} / r \\
\frac{y}{r} \cos \theta+\frac{x}{r} \sin \theta=y^{\prime} / r \\
y^{\prime}=x \sin \theta+y \cos \theta \\
\hline
\end{gathered}
$$

## Rotation in 3D (1 of 6)

- Must specify axis of rotation and direction
- Direction can be specified as from positive $f$-axis towards positive $t$-axis


## Rotation (concl'd)

- Equations for coordinates of rotated point $\left(P^{\prime}\right)$ as explicit functions of angle and original coordinates

$$
x^{\prime}=x \cos \theta-y \sin \theta
$$

$$
y^{\prime}=x \sin \theta+y \cos \theta
$$

- Generalizing to rotation about $\left(c_{x}, c_{y}\right)$

$$
\begin{aligned}
& x^{\prime}=\left(x-c_{x}\right) \cos \theta-\left(y-c_{y}\right) \sin \theta \\
& y^{\prime}=\left(x-c_{x}\right) \sin \theta+\left(y-c_{y}\right) \cos \theta
\end{aligned}
$$

- Programming note: when computing $x$, retain $x$ for use in second equation


## Rotation in 3-D (2 of 6)

- Table to define positive rotations
- from positive $x$-axis to positive $y$-axis about $z$-axis
- from positive $y$-axis to positive $z$-axis about x -axis
- from positive $z$-axis to positive $x$-axis about $y$-axis

- About z -axis

$$
\begin{gathered}
x^{\prime}=x \cos \theta-y \sin \theta \\
y^{\prime}=x \sin \theta+y \cos \theta \\
z^{\prime}=z
\end{gathered}
$$

- generalizing from $f$-axis to $t$-axis about $r$ -
axis: $\quad f^{\prime}=f \cos \theta-t \sin \theta$
$t^{\prime}=f \sin \theta+t \cos \theta$
$r^{\prime}=r$


## Rotation in 3D (5 of 6)

- About x -axis $(y \leftarrow f, z \leftarrow t, x \leftarrow r)$
$x^{\prime}=x$
$y^{\prime}=y \cos \theta-z \sin \theta$
$z^{\prime}=y \sin \theta+z \cos \theta$
- About y-axis $(z \leftarrow f, x \leftarrow t, y \leftarrow r)$
$x^{\prime}=z \sin \theta+x \cos \theta$ $y^{\prime}=y$
$z^{\prime}=z \cos \theta-x \sin \theta$


## Compound Transformations (1 of 6)

- Concatenate several simple transformations to construct general transformations
- Result is a sequence of simple transformations called a compound transformation


## Compound Transformations (2 of 6)

- Ordering in the sequence is important (e.g: 3D rotation about one axis followed by rotation about another axis differs from performing the two rotations in the opposite order)
- In some cases, ordering of the sequence is irrelevant (e.g.: translations, scaling, 2D rotations)

Compound Transformations (3 of 6)

- Example: under what conditions will a scale and rotation transformation commute?
- Scale followed by a rotation about y

$$
\begin{gathered}
x^{\prime}=\left(s_{z} z\right) \sin \theta+\left(s_{x} x\right) \cos \theta \\
y^{\prime}=s_{y} y
\end{gathered}
$$

$$
z^{\prime}=\left(s_{z} z\right) \cos \theta-\left(s_{x} x\right) \sin \theta
$$

- rotation about y followed by a scale
$x^{\prime}=s_{x}(z \sin \theta+x \cos \theta)=\left(s_{x} z\right) \sin \theta+\left(s_{x} x\right) \cos \theta$
$y^{\prime}=s_{y} y$
$z^{\prime}=s_{z}(z \cos \theta-x \sin \theta)=\left(s_{z} z\right) \cos \theta-\left(s_{z} x\right) \sin \theta$
- by observation, results are same if $\mathrm{s}_{\mathrm{x}}=\mathrm{s}_{\mathrm{z}}$


## Compound Transformations (4 of 6)

- Transformations commute if scale factors are the same on the axes that are not the axis of rotation
- A useful special case is uniform scaling


## Compound Transformations

 (5 of 6)- Example: rotation about point $\left(c_{x}, c_{y}\right)$ in 2D

1 ) translate center of rotation to origin
$x^{\prime}=x-c_{x}$
$y^{\prime}=y-c_{y}$
2 ) rotate about origin through angle $\theta$
$x^{\prime \prime}=x^{\prime} \cos \theta-y^{\prime} \sin \theta$
$y^{\prime \prime}=x^{\prime} \sin \theta+y^{\prime} \cos \theta$
3 ) translate origin back to center of rotation $x^{\prime \prime}=x^{\prime \prime}+c_{x}$ $y^{\prime \prime}=y^{\prime \prime}+c_{v}$

Compound Transformations (6 of 6)

- Substitute (1) into (2) into (3)

$$
\begin{aligned}
& x^{\prime \prime \prime}=\left(x-c_{x}\right) \cos \theta-\left(y-c_{y}\right) \sin \theta+c_{x} \\
& y^{\prime \prime \prime}=\left(x-c_{x}\right) \sin \theta+\left(y-c_{y}\right) \cos \theta+c_{y}
\end{aligned}
$$

