Order of Transformations

$$
\begin{aligned}
{\left[\begin{array}{lll}
x^{\prime \prime \prime} & y^{\prime \prime \prime} & 1
\end{array}\right]=} & {\left[\begin{array}{lll}
x^{\prime \prime} & y^{\prime \prime} & 1
\end{array}\right] M_{3} } \\
= & \left(\left[\begin{array}{lll}
x^{\prime} & y^{\prime} & 1
\end{array}\right] M_{2}\right) M_{3} \\
= & \left(\left(\left[\begin{array}{lll}
x & y & 1
\end{array}\right] M_{1}\right) M_{2}\right) M_{3} \\
= & {\left[\begin{array}{lll}
x & y & 1
\end{array}\right] M } \\
\text { where } \quad & M=M_{1} M_{2} M_{3}
\end{aligned}
$$

Order of Transformations (Concl'd)

- Note that N shows matrices in reverse order
- Also note that:

$$
N_{i}=M_{i}^{t}, i=1,2,3
$$

- Furthermore:

$$
\begin{aligned}
N & =N_{3} N_{2} N_{1} \\
& =M^{t}{ }_{3} M^{t}{ }_{2} M^{t}{ }_{1} \\
& =\left(M_{1} M_{2} M_{3}\right)^{t} \\
& =M^{t}
\end{aligned}
$$

Matrix Stack (Cont'd)

- Thus, for "current" (accumulated) matrix C

$$
\begin{array}{cl}
C \leftarrow M_{3} & \left(\Rightarrow C=M_{3}\right) \\
C \leftarrow M_{2} C \quad & \left(\Rightarrow C=M_{2} M_{3}\right) \\
C \leftarrow M_{1} C \quad\left(\Rightarrow C=M_{1} M_{2} M_{3}\right)
\end{array}
$$

- i.e., Current transformation matrix is premultiplied by new transformation matrix
- Thus, calls to transformation routines are in reverse order from their desired effects
- Calls are in order M_{3}, M_{2}, M_{1} to achieve the effect of transformations applied in order M_{1}, M_{2}, M_{3}
$N_{i}=M_{i}{ }^{t}, i=1,2,3$

Order of Transformations (cont'd)

- What about column vector convention ?
$\left[\begin{array}{c}x^{\prime \prime \prime} \\ y^{\prime \prime \prime} \\ 1\end{array}\right]=N_{3}\left[\begin{array}{c}x^{\prime \prime} \\ y^{\prime \prime} \\ 1\end{array}\right]=N_{3} N_{2}\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]=N_{3} N_{2} N_{1}\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=N\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$
Where $N=N_{3} N_{2} N_{1}$

Matrix Stack

- For row vectors

$$
\left[\begin{array}{lll}
x & y & 1
\end{array}\right] M_{1} M_{2} M_{3}
$$

- To form compound matrix prior to multiplication by point, order of matrix multiplication is right to left

Matrix Stack (Cont'd)

- For column vectors

$$
N_{3} N_{2} N_{1}\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

- To form compound matrix prior to multiplication by point, order of matrix multiplication is left to right

Matrix Stack (Cont'd)

- Thus, for "current" (accumulated) matrix C

$$
\begin{array}{cl}
C \leftarrow N_{3} & \left(\Rightarrow C=N_{3}\right) \\
C \leftarrow C N_{2} & \left(\Rightarrow C=N_{3} N_{2}\right) \\
C \leftarrow C N_{1} & \left(\Rightarrow C=N_{3} N_{2} N_{1}\right)
\end{array}
$$

- i.e., Current transformation matrix is postmultiplied by new transformation matrix
- Thus, calls to transformation routines are still in reverse order from their desired effects

Matrix Stack (Concl'd)

- Calls in order N_{3}, N_{2}, N_{1} to achieve the effect of transformation applied in order N_{1}, N_{2}, N_{3}

