Concatenation of Matrix
Transfor mations
(Composition)

Concatenation of two 3D Trandations

Concatenation of two 3D
Trandations (cont’d)

X0 @ 0 0 t, OxO
1) %/E:g’ 104, %’D
O © 0 1 t,dz0
O O
Blm %) 00 1%5
O @ 00 t, OXD
WL 1o UyE
O DoOo1Ht, EEWD
0,0 ‘M 0
mo %) 00 1mlpg
T
Scaling
B, 0 0 00 ®, 0 0 00
SB:Eo s, 0 0oF Szjo s, 0 of
0o 0 s, 0O Qo o s 0O
Eo 0 0 17 0o 0 0 1
®s, 0 0 00
O |
0 S,,S 0 0
O V2 O
S5, = oo 0 s,5, 00
Ho o o 45
* The result is a scaling where the scaling
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* The result is a translation where the
parameters are:  t, =t, +t,
tY:tY1+tY2
t,=t, +t,
Rotation (2D)
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Rotation (2D) (cont’d)

* Substituting 1 into 2 :
X'0 [osh, -sing, Ocosh, -sing, 0OxO

5/’ B= %ine2 cos6, O%nﬁ1 cosf, O%B
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Rotation (2D) about a point

« Consider the rotation about (x..y,)
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 This is equivalent to:
— 1) Translate coordinate system to new system
with origin at (x,y) = ;j?
— 2) Rotate ’ t, C:XC
— 3) Translate Back ,i.e.. mt =y,

Rotation (2D) about a point
(cont’d)
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Rotation (2D) about a point
(cont’d)
* Substituting (1) into (2) into (3):
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Rotation (2D) about a point
(cont’d)

» Now, matrix multiplication is associative
(but not commutative - eg: rotation followed
by translation is not equivalent to vice versa,
reversing order of rotations changes the
result)

Rotation (2D) about a point

(cont’d
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Rotation (2D) about a point
(concl’d)

[xcosf —ysing—x, cosf +y, sind+x.0
= %(sim% ycosH—szinB—yccost9+ycB
g 1 g
dx—x)cosf—(y-y,)sind+x.0
=Rx-x)sin@+(y-y,)cos0+y,

B 1 B

X" =(x=x)cosf =~ (y-y)sinf+x,

Thus:
e Y = (x=x)Sng+(y-y,)cos+y,




Scaling about arbitrary point

Similarly, can scale around an arbitrary
point (eg: center of an object) (X..y,)

Translate coordinate system to new system
with origin at (X.,y,)

—ietEX b=y

e Scale

Translate back

—ieltEx L=y

Scaling about arbitrary point
(cont’d)
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Composition

» Thus, concatenation of matrix
transformations enabled us to solve a more
general problem in terms of simple matrix
transformations

« But there is another important observation
to be made. Equations represent the desired
transformations in single compound
transformation matrices

Composition (cont’d)

« Any number of simple transformations can
be concatenated into a single compound
transformation matrix

¢ Q: Why is this important ?

¢ A: Because it essentially means that
complicated transformations require
virtually the same amount of computation
as simple ones

Composition (concl’d)

« Instead of performing each transformation on all
points, concatenate the matrices, and apply the
compound transformation matrix to all points

« This also saves storage, since it is not necessary to
keep all the simple transformation matrices. All
that is needed is the current compound
transformation matrix

Inverse Transformation

« Transformation which cancels the effect of
the original

« Inverse transformation described by inverse
matrix

« From geometrical intuition, it is easy to
establish inverses




Scaling Inverse
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Rotation Inverse

Inverse of a rotation matrix is simply the
rotation matrix with the angle replaced by
an angle of same magnitude but opposite
sign:

R =R(-6)

Orthogonal Matrix

« Two vectors are orthogonal if their inner
product is zero

Set of vectors is orthogonal if all vectors
are pairwise orthogonal

Square matrix is orthogonal if its column
vectors are orthogonal and all column
vectors are of unit length

Orthogonal Matrix (cont’d)

Inverse of an orthogonal matrix is its
transpose

R—l — Rt
This provides a quick method for obtaining
the inverse of R, since rotation matrices are
orthogonal matrices

Matrix for Multiple Rotation
About Different Axes
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Matrix for Multiple Rotation
About Different Axes (cont’d)

¢ Observe that the resulting matrices are
different

e This is due to the fact that rotation is not
commutative. Thus, there is no single
matrix which embodies all the rotation
matrices

Matrix for Multiple Rotation
About Different Axes (concl’d)

* It is interesting to observe that one matrix
can be obtained from the other by changing
the signs of the angles and taking the
transpose. To see why:

R, =R/(AR.(6)
=(R%@OR™ (g™
=(R(-OR,(-9)™
=(R(-OR,(-9)

Rotation (3D)

* The last step requires that we show that
(REORCOR(-OR,(-9) =1
o form
R(-OR (@R, (-@)R«(-6) =1
R(-OR (@R (-@)R«(-6) =1

R(-O)R«(-6) =1




